Skip to main content
Log in

Theoretical Description and Measurement of the Pion–Photon Transition Form Factor

  • Published:
Few-Body Systems Aims and scope Submit manuscript

    We’re sorry, something doesn't seem to be working properly.

    Please try refreshing the page. If that doesn't work, please contact support so we can address the problem.

Abstract

Detailed predictions for the scaled pion–photon transition form factor are given, derived with the method of light-cone sum rules and using pion distribution amplitudes with two and three Gegenbauer coefficients obtained from QCD sum rules with nonlocal condensates. These predictions agree well with all experimental data that are compatible with QCD scaling (and collinear factorization), but disagree with the high-Q 2 data of the BaBar Collaboration that grow with the momentum. A good agreement of our predictions with results obtained from AdS/QCD models and Dyson–Schwinger computations is found.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Similar content being viewed by others

References

  1. Lepage G.P., Brodsky S.J.: Exclusive processes in perturbative quantum chromodynamics. Phys. Rev. D 22, 2157 (1980)

    Article  ADS  Google Scholar 

  2. Brodsky S.J., Lepage G.P.: Large angle two photon exclusive channels in quantum chromodynamics. Phys. Rev. D 24, 1808 (1981)

    Article  ADS  Google Scholar 

  3. Efremov A.V., Radyushkin A.V.: Asymptotical behavior of pion electromagnetic form factor in QCD. Theor. Math. Phys. 42, 97 (1980)

    Article  Google Scholar 

  4. Bakulev A.P., Mikhailov S.V., Stefanis N.G.: Unbiased analysis of CLEO data beyond LO and pion distribution amplitude. Phys. Rev. D 67, 074012 (2003)

    Article  ADS  Google Scholar 

  5. Bakulev A.P., Mikhailov S.V., Stefanis N.G.: CLEO and E791 data: a smoking gun for the pion distribution amplitude?. Phys. Lett. B 578, 91 (2004)

    Article  ADS  Google Scholar 

  6. Bakulev A.P., Mikhailov S.V., Stefanis N.G.: Tagging the pion quark structure in QCD. Phys. Rev. D 73, 056002 (2006)

    Article  ADS  Google Scholar 

  7. Bakulev A.P., Mikhailov S.V., Pimikov A.V., Stefanis N.G.: Pion–photon transition: the new QCD frontier. Phys. Rev. D 84, 034014 (2011)

    Article  ADS  Google Scholar 

  8. Bakulev A.P., Mikhailov S.V., Pimikov A.V., Stefanis N.G.: Comparing antithetic trends of data for the pion–photon transition form factor. Phys. Rev. D 86, 031501 (2012)

    Article  ADS  Google Scholar 

  9. Stefanis N.G., Bakulev A.P., Mikhailov S.V., Pimikov A.V.: Can we understand an auxetic pion–photon transition form factor within QCD?. Phys. Rev. D 87, 094025 (2013)

    Article  ADS  Google Scholar 

  10. Khodjamirian A.: Form factors of γ*ρπ and γ*γπ 0 transitions and light-cone sum rules. Eur. Phys. J. C 6, 477 (1999)

    ADS  Google Scholar 

  11. Schmedding A., Yakovlev O.: Perturbative effects in the form factor γ γ* → π 0 and extraction of the pion wave function from CLEO data. Phys. Rev. D 62, 116002 (2000)

    Article  ADS  Google Scholar 

  12. Balitsky I.I., Braun V.M., Kolesnichenko A.V.: Radiative decay sigma+ → p gamma in quantum chromodynamics. Nucl. Phys. B 312, 509 (1989)

    Article  ADS  Google Scholar 

  13. Behrend H.J. et al.: A measurement of the \({\pi^0, \; \eta}\) and \({\eta'}\) electromagnetic form-factors. Z. Phys. C 49, 401 (1991)

    Article  Google Scholar 

  14. Gronberg J. et al.: Measurements of the meson photon transition form factors of light pseudoscalar mesons at large momentum transfer. Phys. Rev. D 57, 33 (1998)

    Article  ADS  Google Scholar 

  15. Aubert B. et al.: Measurement of the γ γ* → π 0 transition form factor. Phys. Rev. D 80, 052002 (2009)

    Article  ADS  MathSciNet  Google Scholar 

  16. Uehara S. et al.: Measurement of γ γ* → π 0 transition form factor at Belle. Phys. Rev. D 86, 092007 (2012)

    Article  ADS  Google Scholar 

  17. delAmo Sanchez P. et al.: Measurement of the \({\gamma\gamma^{*} \to \eta}\) and \({\gamma\gamma^{*} \to \eta'}\) transition form factors. Phys. Rev. D 84, 052001 (2011)

    Article  ADS  Google Scholar 

  18. Mikhailov S.V., Stefanis N.G.: Transition form factors of the pion in light-cone QCD sum rules with next-to-next-to-leading order contributions. Nucl. Phys. B 821, 291 (2009)

    Article  ADS  MATH  Google Scholar 

  19. Efremov A.V., Radyushkin A.V.: Factorization and asymptotic behaviour of pion form factor in QCD. Phys. Lett. B 94, 245 (1980)

    Article  ADS  Google Scholar 

  20. Bakulev A.P., Mikhailov S.V., Stefanis N.G.: QCD-based pion distribution amplitudes confronting experimental data. Phys. Lett. B 508, 279 (2001)

    Article  ADS  Google Scholar 

  21. Mikhailov S.V., Radyushkin A.V.: Nonlocal condensates and QCD sum rules for pion wave function. JETP Lett. 43, 712 (1986)

    ADS  Google Scholar 

  22. Mikhailov S.V., Radyushkin A.V.: Quark condensate nonlocality and pion wave function in QCD. Sov. J. Nucl. Phys. 49, 494 (1989)

    Google Scholar 

  23. Mikhailov S.V., Radyushkin A.V.: The pion wave function and QCD sum rules with nonlocal condensates. Phys. Rev. D 45, 1754 (1992)

    Article  ADS  Google Scholar 

  24. Stefanis N.G., Schroers W., Kim H.C.: Pion form factors with improved infrared factorization. Phys. Lett. B 449, 299 (1999)

    Article  ADS  Google Scholar 

  25. Stefanis N.G., Schroers W., Kim H.C.: Analytic coupling and Sudakov effects in exclusive processes: Pion and γ*γπ 0 form factors. Eur. Phys. J. C 18, 137 (2000)

    Article  ADS  Google Scholar 

  26. Agaev S.S., Braun V.M., Offen N., Porkert F.A.: Light cone sum rules for the π 0 γ*γ form factor revisited. Phys. Rev. D 83, 054020 (2011)

    Article  ADS  Google Scholar 

  27. Agaev S., Braun V., Offen N., Porkert F.: BELLE data on the π 0 γ*γ form factor: a game changer?. Phys. Rev. D 86, 077504 (2012)

    Article  ADS  Google Scholar 

  28. Brodsky S.J., Cao F.G., de Teramond G.F.: Evolved QCD predictions for the meson-photon transition form factors. Phys. Rev. D 84, 033001 (2011)

    Article  ADS  Google Scholar 

  29. Chang L., Cloet I., Cobos-Martinez J., Roberts C., Schmidt S. et al.: Imaging dynamical chiral symmetry breaking: pion wave function on the light front. Phys. Rev. Lett. 110, 132001 (2013)

    Article  ADS  Google Scholar 

  30. Kochelev N., Vento V.: Gluonic components of the pion and the transition form factor γ*γ* → π 0. Phys. Rev. D 81, 034009 (2010)

    Article  ADS  Google Scholar 

  31. Noguera S., Vento V.: Model analysis of the world data on the pion transition form factor. Eur. Phys. J. A 48, 143 (2012)

    Article  ADS  Google Scholar 

  32. Dorokhov A., Kuraev E.: Pion transition form factor in the constituent quark model. Phys. Rev. D 88, 014038 (2013)

    Article  ADS  Google Scholar 

  33. Kroll P.: The form factors for the photon to pseudoscalar meson transitions: an update. Eur. Phys. J. C 71, 1623 (2011)

    Article  ADS  Google Scholar 

  34. Li H.N., Shen Y.L., Wang Y.M.: Joint resummation for pion wave function and pion transition form factor. JHEP 1401, 004 (2014)

    Article  ADS  Google Scholar 

  35. Brodsky, S.J., de Teramond, G.F., Dosch, H.G.: QCD on the light-front: a systematic approach to hadron physics (2013)

  36. Cloet, I.C., Roberts, C.D.: Explanation and Prediction of observables using continuum strong QCD. arXiv:1310.2651 (2013)

  37. El-Bennich B., de Melo J., Frederico T.: A combined study of the pion’s static properties and form factors. Few Body Syst. 54, 1851 (2013)

    Article  ADS  Google Scholar 

  38. de Melo, J., El-Bennich, B., Frederico, T.: The photon-pion transition form factor: incompatible data or incompatible models? arXiv:1312.6133

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to S. V. Mikhailov.

Rights and permissions

Reprints and permissions

About this article

Cite this article

Mikhailov, S.V., Pimikov, A.V. & Stefanis, N.G. Theoretical Description and Measurement of the Pion–Photon Transition Form Factor. Few-Body Syst 55, 367–372 (2014). https://doi.org/10.1007/s00601-014-0849-8

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s00601-014-0849-8

Keywords

Navigation