Few-Body Systems

, Volume 55, Issue 1, pp 1–33 | Cite as

Elastic and Transition Form Factors of the Δ(1232)

  • Jorge Segovia
  • Chen Chen
  • Ian C. Cloët
  • Craig D. Roberts
  • Sebastian M. Schmidt
  • Shaolong Wan


Predictions obtained with a confining, symmetry-preserving treatment of a vector ⊗ vector contact interaction at leading-order in a widely used truncation of QCD’s Dyson–Schwinger equations are presented for Δ and Ω baryon elastic form factors and the γN → Δ transition form factors. This simple framework produces results that are practically indistinguishable from the best otherwise available, an outcome which highlights that the key to describing many features of baryons and unifying them with the properties of mesons is a veracious expression of dynamical chiral symmetry breaking in the hadron bound-state problem. The following specific results are of particular interest. The Δ elastic form factors are very sensitive to mΔ. Hence, given that the parameters which define extant simulations of lattice-regularised QCD produce Δ-resonance masses that are very large, the form factors obtained therewith are a poor guide to properties of the Δ(1232). Considering the Δ-baryon’s quadrupole moment, whilst all computations produce a negative value, the conflict between theoretical predictions entails that it is currently impossible to reach a sound conclusion on the nature of the Δ-baryon’s deformation in the infinite momentum frame. Results for analogous properties of the Ω baryon are less contentious. In connection with the N → Δ transition, the Ash-convention magnetic transition form factor falls faster than the neutron’s magnetic form factor and nonzero values for the associated quadrupole ratios reveal the impact of quark orbital angular momentum within the nucleon and Δ; and, furthermore, these quadrupole ratios do slowly approach their anticipated asymptotic limits.


Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.


  1. 1.
    Aznauryan I., Bashir A., Braun V., Brodsky S., Burkert V. et al.: Studies of nucleon resonance structure in exclusive meson electroproduction. Int. J. Mod. Phys. E 22, 012008 (2013)Google Scholar
  2. 2.
    Suzuki N. et al.: Disentangling the dynamical origin of P-11 nucleon resonances. Phys. Rev. Lett. 104, 042302 (2010)ADSGoogle Scholar
  3. 3.
    Kamano, H., Nakamura, S.X., Lee, T.S.H., Sato, T.: (arXiv:1305.4351 [arXiv]) Nucleon resonances within a dynamical coupled-channels model of πN and γN reactionsGoogle Scholar
  4. 4.
    Cloët, I.C., Roberts, C.D., Thomas, A.W.: (arXiv:1304.0855 [nucl-th]) Revealing dressed-quarks via the proton’s charge distribution. Phys. Rev. Lett. 111, 101803 (2013)Google Scholar
  5. 5.
    Chang L., Cloët I.C., Roberts C.D., Schmidt S.M., Tandy P.C.: (arXiv:1307.0026 [nucl-th]) Pion electromagnetic form factor at spacelike momenta. Phys. Rev. Lett. 111, 141802 (2013)ADSGoogle Scholar
  6. 6.
    Ash W., Berkelman K., Lichtenstein C., Ramanauskas A., Siemann R.: Measurement of the γNN * form factor. Phys. Lett. B 24, 165–168 (1967)ADSGoogle Scholar
  7. 7.
    Gutiérrez-Guerrero L.X., Bashir A., Cloët I.C., Roberts C.D.: Pion form factor from a contact interaction. Phys. Rev. C 81, 065202 (2010)ADSGoogle Scholar
  8. 8.
    Roberts H.L.L., Roberts C.D., Bashir A., Gutiérrez-Guerrero L.X., Tandy P.C.: Abelian anomaly and neutral pion production. Phys. Rev. C 82, 065202 (2010)ADSGoogle Scholar
  9. 9.
    Roberts H.L.L., Chang L., Cloët I.C., Roberts C.D.: Masses of ground and excited-state hadrons. Few Body Syst. 51, 1–25 (2011)ADSGoogle Scholar
  10. 10.
    Roberts H.L.L., Bashir A., Gutiérrez-Guerrero L.X., Roberts C.D., Wilson D.J.: π- and ρ-mesons, and their diquark partners, from a contact interaction. Phys. Rev. C 83, 065206 (2011)ADSGoogle Scholar
  11. 11.
    Wilson D.J., Cloët I.C., Chang L., Roberts C.D.: Nucleon and Roper electromagnetic elastic and transition form factors. Phys. Rev. C 85, 025205 (2012)ADSGoogle Scholar
  12. 12.
    Chen C., Chang L., Roberts C.D., Wan S.-L., Wilson D.J.: Spectrum of hadrons with strangeness. Few Body Syst. 53, 293–326 (2012)ADSGoogle Scholar
  13. 13.
    Chen C., Chang L., Roberts C.D., Wan S.-L., Schmidt S.M., Wilson D.J.: Features and flaws of a contact interaction treatment of the kaon. Phys. Rev. C 87, 045207 (2013)ADSGoogle Scholar
  14. 14.
    Wang K.-l., Liu Y.-x., Chang L., Roberts C.D., Schmidt S.M.: Baryon and meson screening masses. Phys. Rev. D 87, 074038 (2013)ADSGoogle Scholar
  15. 15.
    Segovia J., Chen C., Roberts C.D., Wan S.: (arXiv:1305.0292 [nucl-th]) Insights into the γ * N → Δ transition. Phys. Rev. C 88, 032201 (R) (2013)ADSGoogle Scholar
  16. 16.
    Fermi E., Anderson H., Lundby A., Nagle D., Yodh G.: Ordinary and exchange scattering of negative pions by hydrogen. Phys. Rev. 85, 935–936 (1952)ADSGoogle Scholar
  17. 17.
    Anderson H., Fermi E., Long E., Nagle D.: Total cross-sections of positive pions in hydrogen. Phys. Rev. 85, 936 (1952)ADSGoogle Scholar
  18. 18.
    Nagle, D.E.: The Delta: The First Pion Nucleon Resonance, Its Discovery and Applications. The Delta: The First Pion Nucleon Resonance, Its Discovery and Applications, Los Alamos National Laboratory Report no. LALP-84-27 (1984)Google Scholar
  19. 19.
    Beringer J. et al.: Review of particle physics (RPP). Phys. Rev. D 86, 010001 (2012)ADSGoogle Scholar
  20. 20.
    Sato T., Lee T.-S.H.: Dynamical study of the Δ excitation in N (e, eπ) reactions. Phys. Rev. C 63, 055201 (2001)ADSGoogle Scholar
  21. 21.
    Julia-Diaz B., Lee T.-S.H., Sato T., Smith L.C.: Extraction and interpretation of γN → Δ form factors within a dynamical model. Phys. Rev. C 75, 015205 (2007)ADSGoogle Scholar
  22. 22.
    Eichmann G., Alkofer R., Cloët I.C., Krassnigg A., Roberts C.D.: Perspective on rainbow-ladder truncation. Phys. Rev. C77, 042202(R) (2008)ADSGoogle Scholar
  23. 23.
    Eichmann G., Cloët I.C., Alkofer R., Krassnigg A., Roberts C.D.: Toward unifying the description of meson and baryon properties. Phys. Rev. C 79, 012202(R) (2009)ADSGoogle Scholar
  24. 24.
    Cloët I.C., Eichmann G., El-Bennich B., Klähn T., Roberts C.D.: Survey of nucleon electromagnetic form factors. Few Body Syst. 46, 1–36 (2009)ADSGoogle Scholar
  25. 25.
    Scadron M.D.: Covariant propagators and vertex functions for any spin. Phys. Rev. 165, 1640–1647 (1968)ADSGoogle Scholar
  26. 26.
    Beg M., Lee B., Pais A.: SU(6) and electromagnetic interactions. Phys. Rev. Lett. 13, 514–517 (1964)ADSGoogle Scholar
  27. 27.
    Buchmann A.J., Hernández E., Faessler A.: Electromagnetic properties of the Δ (1232). Phys. Rev. C 55, 448–463 (1997)ADSGoogle Scholar
  28. 28.
    Alexandrou C., Korzec T., Koutsou G., Lorce C., Negele J.W. et al.: Quark transverse charge densities in the Δ(1232) from lattice QCD. Nucl. Phys. A 825, 115–144 (2009)ADSGoogle Scholar
  29. 29.
    Brodsky S.J., Hiller J.R.: Universal properties of the electromagnetic interactions of spin one systems. Phys. Rev. D 46, 2141–2149 (1992)ADSGoogle Scholar
  30. 30.
    Ferrara S., Porrati M., Telegdi V.L.: g = 2 as the natural value of the tree level gyromagnetic ratio of elementary particles. Phys. Rev. D 46, 3529–3537 (1992)ADSGoogle Scholar
  31. 31.
    Pichowsky M.A., Walawalkar S., Capstick S.: Meson-loop contributions to the ρ ω mass splitting and ρ charge radius. Phys. Rev. D 60, 054030 (1999)ADSGoogle Scholar
  32. 32.
    Maris P., Tandy P.C.: Bethe–Salpeter study of vector meson masses and decay constants. Phys. Rev. C 60, 055214 (1999)ADSGoogle Scholar
  33. 33.
    Jarecke D., Maris P., Tandy P.C.: Strong decays of light vector mesons. Phys. Rev. C 67, 035202 (2003)ADSGoogle Scholar
  34. 34.
    Aznauryan I., Burkert V., Lee T.-S., Mokeev V.: Results from the N* program at JLab. J. Phys. Conf. Ser. 299, 012008 (2011)ADSGoogle Scholar
  35. 35.
    Aznauryan I., Burkert V.: Electroexcitation of nucleon resonances. Prog. Part. Nucl. Phys. 67, 1–54 (2012)ADSGoogle Scholar
  36. 36.
    Jones H.F., Scadron M.D.: Multipole γ N Δ form-factors and resonant photoproduction and electroproduction. Ann. Phys. 81, 1–14 (1973)ADSGoogle Scholar
  37. 37.
    Chang L., Roberts C.D., Tandy P.C.: Selected highlights from the study of mesons. Chin. J. Phys. 49, 955–1004 (2011)Google Scholar
  38. 38.
    Roberts, C.D.: (arXiv:1203.5341 [nucl-th]) Strong QCD and Dyson–Schwinger EquationsGoogle Scholar
  39. 39.
    Bashir A., Chang L., Cloet I.C., El-Bennich B., Liu Y.-x. et al.: Collective perspective on advances in Dyson–Schwinger equation QCD. Commun. Theor. Phys. 58, 79–134 (2012)ADSMATHGoogle Scholar
  40. 40.
    Cahill R.T., Roberts C.D., Praschifka J.: Baryon structure and QCD. Austral. J. Phys. 42, 129–145 (1989)ADSGoogle Scholar
  41. 41.
    Close F.E., Thomas A.W.: The spin and flavor dependence of parton distribution functions. Phys. Lett. B212, 227 (1988)ADSGoogle Scholar
  42. 42.
    Cloët I., Bentz W., Thomas A.W.: Nucleon quark distributions in a covariant quark–diquark model. Phys. Lett. B 621, 246–252 (2005)ADSGoogle Scholar
  43. 43.
    Cates G., de Jager C., Riordan S., Wojtsekhowski B.: Flavor decomposition of the elastic nucleon electromagnetic form factors. Phys. Rev. Lett. 106, 252003 (2011)ADSGoogle Scholar
  44. 44.
    Cloët I.C., Miller G.A.: Nucleon form factors and spin content in a quark–diquark model with a pion cloud. Phys. Rev. C 86, 015208 (2012)ADSGoogle Scholar
  45. 45.
    Qattan I.A., Arrington J.: Flavor decomposition of the nucleon electromagnetic form factors. Phys. Rev. C 86, 065210 (2012)ADSGoogle Scholar
  46. 46.
    Roberts C.D., Holt R.J., Schmidt S.M.: (arXiv:1308.1236 [nucl-th]) Nucleon spin structure at very high-x. Phys. Lett. B 727, 249–254 (2013)ADSGoogle Scholar
  47. 47.
    The Committee on the Assessment of and Outlook for Nuclear Physics; Board on Physics and Astronomy; Division on Engineering and Physical Sciences; National Research Council: Nuclear Physics: Exploring the Heart of Matter. National Academies Press (2012)Google Scholar
  48. 48.
    Cahill R.T., Roberts C.D., Praschifka J.: Calculation of diquark masses in QCD. Phys. Rev. D36, 2804 (1987)ADSGoogle Scholar
  49. 49.
    Nicmorus D., Eichmann G., Alkofer R.: Delta and Omega electromagnetic form factors in a Dyson–Schwinger/Bethe–Salpeter approach. Phys. Rev. D 82, 114017 (2010)ADSGoogle Scholar
  50. 50.
    Lichtenberg D.B., Tassie L.J.: Baryon mass splitting in a Boson–Fermion model. Phys. Rev. 155, 1601–1606 (1967)ADSGoogle Scholar
  51. 51.
    Lichtenberg D.B., Tassie L.J., Keleman P.J.: Quark–Diquark model of maryons and SU(6). Phys. Rev. 167, 1535–1542 (1968)ADSGoogle Scholar
  52. 52.
    Blaschke D., Kalinovsky Y., Roepke G., Schmidt S., Volkov M.: 1/N(c) expansion of the quark condensate at finite temperature. Phys. Rev. D 53, 2394–2400 (1996)ADSGoogle Scholar
  53. 53.
    Fischer C.S., Nickel D., Wambach J.: Hadronic unquenching effects in the quark propagator. Phys. Rev. D76, 094009 (2007)ADSGoogle Scholar
  54. 54.
    Cloët I.C., Roberts C.D.: Form factors and Dyson–Schwinger equations. PoS LC2008, 047 (2008)Google Scholar
  55. 55.
    Chang L., Cloët I.C., El-Bennich B., Klähn T., Roberts C.D.: Exploring the light–quark interaction. Chin. Phys. C33, 1189–1196 (2009)ADSGoogle Scholar
  56. 56.
    Maris P., Roberts C.D.: Dyson–Schwinger equations: a tool for hadron physics. Int. J. Mod. Phys. E 12, 297–365 (2003)ADSGoogle Scholar
  57. 57.
    Roberts C.D., Schmidt S.M.: Dyson–Schwinger equations: density, temperature and continuum strong QCD. Prog. Part. Nucl. Phys. 45, S1–S103 (2000)ADSGoogle Scholar
  58. 58.
    Roberts C.D., Bhagwat M.S., Höll A., Wright S.V.: Aspects of hadron physics. Eur. Phys. J. ST 140, 53–116 (2007)Google Scholar
  59. 59.
    Roberts C.D., Cahill R.T., Praschifka J.: QCD and a calculation of the ω–ρ mass splitting. Int. J. Mod. Phys. A4, 719 (1989)ADSGoogle Scholar
  60. 60.
    Hollenberg L.C., Roberts C.D., McKellar B.H.: Two loop calculation of the ω−ρ mass splitting. Phys. Rev. C 46, 2057–2065 (1992)ADSGoogle Scholar
  61. 61.
    Alkofer R., Bender A., Roberts C.D.: Pion loop contribution to the electromagnetic pion charge radius. Int. J. Mod. Phys. A 10, 3319–3342 (1995)ADSGoogle Scholar
  62. 62.
    Mitchell K., Tandy P.: Pion loop contribution to ρ-ω mixing and mass splitting. Phys. Rev. C 55, 1477–1491 (1997)ADSGoogle Scholar
  63. 63.
    Ishii N.: Meson exchange contributions to the nucleon mass in the Faddeev approach to the NJL model. Phys. Lett. B431, 1–7 (1998)ADSGoogle Scholar
  64. 64.
    Hecht M.B., Oettel M., Roberts C.D., Schmidt S.M., Tandy P.C. et al.: Nucleon mass and pion loops. Phys. Rev. C 65, 055204 (2002)ADSGoogle Scholar
  65. 65.
    Leinweber D.B., Thomas A.W., Tsushima K., Wright S.V.: Chiral behavior of the ρ meson in lattice QCD. Phys. Rev. D 64, 094502 (2001)ADSGoogle Scholar
  66. 66.
    Young R.D., Leinweber D.B., Thomas A.W., Wright S.V.: Chiral analysis of quenched baryon masses. Phys. Rev. D66, 094507 (2002)ADSGoogle Scholar
  67. 67.
    Cloët I., Eichmann G., Flambaum V., Roberts C., Bhagwat M. et al.: Current quark mass dependence of nucleon magnetic moments and radii. Few Body Syst. 42, 91–113 (2008)ADSGoogle Scholar
  68. 68.
    Carlson C.E.: Electromagnetic N → Δ transition at high Q 2. Phys. Rev. D 34, 2704 (1986)ADSGoogle Scholar
  69. 69.
    Pascalutsa V., Vanderhaeghen M., Yang S.N.: Electromagnetic excitation of the Δ(1232)-resonance. Phys. Rept. 437, 125–232 (2007)ADSGoogle Scholar
  70. 70.
    Alexandrou C., Papanicolas C., Vanderhaeghen M.: (arXiv:1201.4511 [hep-ph]) The Shape of Hadrons. Rev. Mod. Phys. 84, 1231–1251 (2012)ADSGoogle Scholar
  71. 71.
    Eichmann G., Nicmorus D.: Nucleon to delta electromagnetic transition in the Dyson–Schwinger approach. Phys. Rev. D 85, 093004 (2012)ADSGoogle Scholar
  72. 72.
    Alexandrou C., Korzec T., Leontiou T., Negele J.W., Tsapalis A.: Electromagnetic form-factors of the Δ baryon. PoS LAT2007, 149 (2007)Google Scholar
  73. 73.
    Buchmann A.J., Lebed R.F.: Large N(c), constituent quarks, and N, Delta charge radii. Phys. Rev. D 62, 096005 (2000)ADSGoogle Scholar
  74. 74.
    Sanchis-Alepuz H., Williams R., Alkofer R.: Delta and Omega electromagnetic form factors in a three-body covariant Bethe–Salpeter approach. Phys. Rev. D 87, 095015 (2013)ADSGoogle Scholar
  75. 75.
    Geng L., Martin Camalich J., Vicente Vacas M.: Electromagnetic structure of the lowest-lying decuplet resonances in covariant chiral perturbation theory. Phys. Rev. D 80, 034027 (2009)ADSGoogle Scholar
  76. 76.
    Boinepalli S., Leinweber D., Moran P., Williams A., Zanotti J. et al.: Precision electromagnetic structure of decuplet baryons in the chiral regime. Phys. Rev. D 80, 054505 (2009)ADSGoogle Scholar
  77. 77.
    Aliev T., Azizi K., Savci M.: Magnetic dipole moment of the light tensor mesons in light cone QCD sum rules. J. Phys. G 37, 075008 (2010)ADSGoogle Scholar
  78. 78.
    Ledwig T., Silva A., Vanderhaeghen M.: Electromagnetic properties of the Δ(1232) and decuplet baryons in the self-consistent SU(3) chiral quark-soliton model. Phys. Rev. D 79, 094025 (2009)ADSGoogle Scholar
  79. 79.
    Buchmann A.J., Henley E.M.: Quadrupole moments of baryons. Phys. Rev. D 65, 073017 (2002)ADSGoogle Scholar
  80. 80.
    Buchmann A., Henley E.: Baryon octupole moments. Eur. Phys. J. A 35, 267–269 (2008)ADSGoogle Scholar
  81. 81.
    Luty M.A., March-Russell J., White M.J.: Baryon magnetic moments in a simultaneous expansion in 1/N and m s. Phys. Rev. D 51, 2332–2337 (1995)ADSGoogle Scholar
  82. 82.
    Schlumpf F.: Magnetic moments of the baryon decuplet in a relativistic quark model. Phys. Rev. D 48, 4478–4480 (1993)ADSGoogle Scholar
  83. 83.
    Butler M.N., Savage M.J., Springer R.P.: Electromagnetic moments of the baryon decuplet. Phys. Rev. D 49, 3459–3465 (1994)ADSGoogle Scholar
  84. 84.
    Krivoruchenko M., Giannini M.: Quadrupole moments of the decuplet baryons. Phys. Rev. D 43, 3763–3765 (1991)ADSGoogle Scholar
  85. 85.
    Alexandrou C., Korzec T., Koutsou G., Negele J., Proestos Y.: The electromagnetic form factors of the Ω in lattice QCD. Phys. Rev. D 82, 034504 (2010)ADSGoogle Scholar
  86. 86.
    Buchmann A.: Electromagnetic N → Δ Delta transition and neutron form-factors. Phys. Rev. Lett. 93, 212301 (2004)ADSGoogle Scholar
  87. 87.
    Aznauryan I. et al.: Electroexcitation of nucleon resonances from CLAS data on single pion electroproduction. Phys. Rev. C 80, 055203 (2009)ADSGoogle Scholar
  88. 88.
    Bartel W., Dudelzak B., Krehbiel H., McElroy J., Meyer-Berkhout U. et al.: Electroproduction of pions near the Δ(1236) isobar and the form-factor of G *(M)(Q 2) of the γN Δ vertex. Phys. Lett. B 28, 148–151 (1968)ADSGoogle Scholar
  89. 89.
    Stein S., Atwood W., Bloom E.D., Cottrell R.L., DeStaebler H. et al.: Electron scattering at 4-degrees with energies of 4.5-GeV–20-GeV. Phys. Rev. D 12, 1884 (1975)ADSGoogle Scholar
  90. 90.
    Sparveris N. et al.: Investigation of the conjectured nucleon deformation at low momentum transfer. Phys. Rev. Lett. 94, 022003 (2005)ADSGoogle Scholar
  91. 91.
    Stave S. et al.: Measurements of the γ * p → Δ reaction at low Q 2: probing the mesonic contribution. Phys. Rev. C 78, 025209 (2008)ADSGoogle Scholar
  92. 92.
    Aznauryan I., Burkert V.: Nucleon electromagnetic form factors and electroexcitation of low lying nucleon resonances in a light-front relativistic quark model. Phys. Rev. C 85, 055202 (2012)ADSGoogle Scholar
  93. 93.
    Beck R., Krahn H., Ahrens J., Annand J., Arends H. et al.: Determination of the E2/M1 ratio in the γ N → Δ(1232) transition from a simultaneous measurement of \({p(\overrightarrow{\gamma}, p) \pi^0}\) and \({p(\overrightarrow{\gamma}, \pi^+)n}\). Phys. Rev. C 61, 035204 (2000)ADSGoogle Scholar
  94. 94.
    Pospischil T., Bartsch P., Baumann D., Bermuth J., Bohm R. et al.: Measurement of the recoil polarization in the \({p(\overrightarrow{e}, \overrightarrow{e}^\prime \overrightarrow{p})\pi^0}\) reaction at the Δ(1232) resonance. Phys. Rev. Lett. 86, 2959–2962 (2001)ADSGoogle Scholar
  95. 95.
    Blanpied G., Blecher M., Caracappa A., Deininger R., Djalali C. et al.: N → Δ transition and proton polarizabilities from measurements of \({p(\overrightarrow{\gamma}, \gamma), p (\overrightarrow{\gamma}, \pi^0)}\), and \({p(\overrightarrow{\gamma}, \pi^+)}\). Phys. Rev. C 64, 025203 (2001)ADSGoogle Scholar
  96. 96.
    Idilbi A., Ji X.-d., Ma J.-P.: Δ → N γ * Coulomb quadrupole amplitude in pQCD. Phys. Rev. D 69, 014006 (2004)ADSGoogle Scholar
  97. 97.
    Bender A., Detmold W., Roberts C.D., Thomas A.W.: Bethe–Salpeter equation and a nonperturbative quark gluon vertex. Phys. Rev. C 65, 065203 (2002)ADSGoogle Scholar
  98. 98.
    Bhagwat M.S., Höll A., Krassnigg A., Roberts C.D., Tandy P.C.: Aspects and consequences of a dressed-quark-gluon vertex. Phys. Rev. C 70, 035205 (2004)ADSGoogle Scholar
  99. 99.
    Watson P., Cassing W., Tandy P.C.: Bethe–Salpeter meson masses beyond ladder approximation. Few Body Syst. 35, 129–153 (2004)ADSGoogle Scholar
  100. 100.
    Chang L., Roberts C.D.: Sketching the Bethe–Salpeter kernel. Phys. Rev. Lett. 103, 081601 (2009)ADSMathSciNetGoogle Scholar
  101. 101.
    Chang L., Roberts C.D.: Tracing masses of ground-state light–quark mesons. Phys. Rev. C 85, 052201(R) (2012)ADSGoogle Scholar
  102. 102.
    Qin S.-x., Chang L., Liu Y.-x., Roberts C.D., Wilson D.J.: Interaction model for the gap equation. Phys. Rev. C 84, 042202(R) (2011)ADSGoogle Scholar
  103. 103.
    Aguilar A., Binosi D., Papavassiliou J., Rodriguez-Quintero J.: Non-perturbative comparison of QCD effective charges. Phys. Rev. D 80, 085018 (2009)ADSGoogle Scholar
  104. 104.
    Oliveira O., Bicudo P.: Running gluon mass from Landau gauge lattice QCD propagator. J. Phys. G38, 045003 (2011)ADSGoogle Scholar
  105. 105.
    Aguilar A.C., Binosi D., Papavassiliou J.: QCD effective charges from lattice data. JHEP 07, 002 (2010)ADSGoogle Scholar
  106. 106.
    Boucaud P., Gomez M., Leroy J., Le Yaouanc A., Micheli J. et al.: The low-momentum ghost dressing function and the gluon mass. Phys. Rev. D82, 054007 (2010)ADSGoogle Scholar
  107. 107.
    Pennington M.R., Wilson D.J.: Are the dressed gluon and ghost propagators in the landau gauge presently determined in the confinement regime of QCD?. Phys. Rev. D 84, 119901 (2011)ADSGoogle Scholar
  108. 108.
    Wilson, D., Pennington, M.: Vertex Sensitivity in the Schwinger–Dyson Equations of QCD. PoS QCD-TNT-II:052 (2011)Google Scholar
  109. 109.
    Munczek H.J.: Dynamical chiral symmetry breaking, Goldstone’s theorem and the consistency of the Schwinger–Dyson and Bethe–Salpeter equations. Phys. Rev. D 52, 4736–4740 (1995)ADSGoogle Scholar
  110. 110.
    Bender A., Roberts C.D., de Smekal L.: Goldstone theorem and diquark confinement beyond rainbow-ladder approximation. Phys. Lett. B 380, 7–12 (1996)ADSGoogle Scholar
  111. 111.
    Ebert D., Feldmann T., Reinhardt H.: Extended NJL model for light and heavy mesons without \({q \bar q}\) thresholds. Phys. Lett. B 388, 154–160 (1996)ADSGoogle Scholar
  112. 112.
    Brodsky S.J., Roberts C.D., Shrock R., Tandy P.C.: New perspectives on the quark condensate. Phys. Rev. C 82, 022201(R) (2010)ADSGoogle Scholar
  113. 113.
    Chang L., Roberts C.D., Tandy P.C.: Expanding the concept of in-hadron condensates. Phys. Rev. C 85, 012201(R) (2012)ADSGoogle Scholar
  114. 114.
    Brodsky S.J., Roberts C.D., Shrock R., Tandy P.C.: Confinement contains condensates. Phys. Rev. C 85, 065202 (2012)ADSGoogle Scholar
  115. 115.
    Leutwyler H.: Light quark masses. PoS CD09, 005 (2009)Google Scholar
  116. 116.
    Maris P., Roberts C.D.: π and K meson Bethe–Salpeter amplitudes. Phys. Rev. C 56, 3369–3383 (1997)ADSGoogle Scholar
  117. 117.
    Roberts C.D.: Looking into the matter of light–quark hadrons. Few Body Syst. 52, 345–355 (2012)ADSGoogle Scholar
  118. 118.
    Roberts C.D.: Electromagnetic pion form-factor and neutral pion decay width. Nucl. Phys. A 605, 475–495 (1996)ADSGoogle Scholar
  119. 119.
    Oettel M., Hellstern G., Alkofer R., Reinhardt H.: Octet and decuplet baryons in a covariant and confining diquark–quark model. Phys. Rev. C 58, 2459–2477 (1998)ADSGoogle Scholar
  120. 120.
    Cloët, I.C., Krassnigg, A., Roberts, C.D.: (arXiv:0710.5746 [nucl-th]) Dynamics, Symmetries and Hadron Properties. In: Machner, H., Krewald, S. (eds.) Proceedings of 11th International Conference on Meson-Nucleon Physics and the Structure of the Nucleon (MENU 2007), Jülich, Germany, paper 125 (10–14 Sept. 2007)Google Scholar
  121. 121.
    Buck A., Alkofer R., Reinhardt H.: Baryons as bound states of diquarks and quarks in the Nambu–Jona–Lasinio model. Phys. Lett. B286, 29–35 (1992)ADSGoogle Scholar
  122. 122.
    Bentz W., Cloët I.C., Ito T., Thomas A.W., Yazaki K.: Polarized structure functions of nucleons and nuclei. Prog. Part. Nucl. Phys. 61, 238–244 (2008)ADSGoogle Scholar
  123. 123.
    Horikawa T., Bentz W.: Medium modifications of nucleon electromagnetic form-factors. Nucl. Phys. A 762, 102–128 (2005)ADSGoogle Scholar
  124. 124.
    Bicudo P.J.A., Ribeiro J.E.F.T., Fernandes R.: The anomalous magnetic moment of quarks. Phys. Rev. C 59, 1107–1112 (1999)ADSGoogle Scholar
  125. 125.
    Kochelev N.I.: Anomalous quark chromomagnetic moment induced by instantons. Phys. Lett. B 426, 149–153 (1998)ADSGoogle Scholar
  126. 126.
    Chang L., Liu Y.-X., Roberts C.D.: Dressed-quark anomalous magnetic moments. Phys. Rev. Lett. 106, 072001 (2011)ADSGoogle Scholar
  127. 127.
    Bashir A., Bermúdez R., Chang L., Roberts C.D.: Dynamical chiral symmetry breaking and the fermion–gauge–boson vertex. Phys. Rev. C 85, 045205 (2012)ADSGoogle Scholar
  128. 128.
    Qin S.-x., Chang L., Liu Y.-x., Roberts C.D., Schmidt S.M.: Practical corollaries of transverse Ward–Green–Takahashi identities. Phys. Lett. B 722, 384–388 (2013)ADSGoogle Scholar
  129. 129.
    Cloët I., Leinweber D.B., Thomas A.W.: Δ-baryon magnetic moments from lattice QCD. Phys. Lett. B 563, 157–164 (2003)ADSGoogle Scholar
  130. 130.
    Oettel M., Pichowsky M., von Smekal L.: Current conservation in the covariant quark–diquark model of the nucleon. Eur. Phys. J. A8, 251–281 (2000)ADSGoogle Scholar

Copyright information

© Springer-Verlag Wien (outside the USA) 2013

Authors and Affiliations

  • Jorge Segovia
    • 1
  • Chen Chen
    • 2
    • 3
  • Ian C. Cloët
    • 1
  • Craig D. Roberts
    • 1
  • Sebastian M. Schmidt
    • 4
  • Shaolong Wan
    • 3
  1. 1.Physics DivisionArgonne National LaboratoryArgonneUSA
  2. 2.Hefei National Laboratory for Physical Sciences at MicroscaleUniversity of Science and Technology of ChinaHefeiPeople’s Republic of China
  3. 3.Department of Modern Physics, Institute for Theoretical PhysicsUniversity of Science and Technology of ChinaHefeiPeople’s Republic of China
  4. 4.Institute for Advanced SimulationForschungszentrum Jülich and JARAJülichGermany

Personalised recommendations