Skip to main content
Log in

Solutions of the Second Pöschl–Teller Potential Solved by an Improved Scheme to the Centrifugal Term

  • Published:
Few-Body Systems Aims and scope Submit manuscript

Abstract

Using an improved approximate formula to the centrifugal term, we present arbitrary l-state bound and scattering solutions of the second Pöschl–Teller potential. We find that our approximate formula is better than a previous one since the calculated results are in better agreement with numerically exact ones.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Subscribe and save

Springer+ Basic
EUR 32.99 /Month
  • Get 10 units per month
  • Download Article/Chapter or Ebook
  • 1 Unit = 1 Article or 1 Chapter
  • Cancel anytime
Subscribe now

Buy Now

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Similar content being viewed by others

References

  1. Pöschl G., Teller E.: Bemerkungen zur Quantenmechanik des anharmonischen Oszillators. Z. Phys. 83, 143 (1933)

    Article  ADS  Google Scholar 

  2. Neece G.A., Poirier J.C.: Quantum statistical theory of atoms in hydroquinone clathrates. J. Chem. Phys. 43, 4282 (1965)

    Article  ADS  Google Scholar 

  3. Corso P.P., Fiordilino E., Persico F.: Ionization dynamics of a model molecular ion. J. Phys. B: At. Mol. Opt. Phys. 38, 1015 (2005)

    Article  ADS  Google Scholar 

  4. Rey M., Michelot F.: Matrix elements for powers of x-dependent operators for the hyperbolic Pöschl–Teller potentials. J. Phys. A: Math. Theor. 42, 165209 (2009)

    Article  MathSciNet  ADS  Google Scholar 

  5. Ma Z.Q., Xu B.W.: Quantum correction in exact quantization rules. Eur. Phys. Lett. 69, 685 (2005)

    Article  ADS  Google Scholar 

  6. Dong S.H.: A new quantization rule to the energy spectra for modified hyperbolic-type potentials. Int. J. Quantum Chem. 109, 701 (2009)

    Article  ADS  Google Scholar 

  7. Barut A.O., Inomata A., Wilson R.: Algebraic treatment of second Pöschl-Teller Morse-Rosen and Eckart equations. J. Phys. A: Math. Gen. 20, 4083 (1987)

    Article  MathSciNet  ADS  Google Scholar 

  8. Quesne C.: An sl(4,R) Lie algebraic approach to the Bargmann functions and its application to the second Pöschl-Teller equation. J. Phys. A: Math. Gen. 22, 3723 (1989)

    Article  MathSciNet  ADS  MATH  Google Scholar 

  9. Diao Y.F., Yi L.Z., Jia C.S.: Bound states of the KleinCGordon equation with vector and scalar five-parameter exponential-type potentials. Phys. Lett. A 332, 157 (2004)

    Article  MathSciNet  ADS  MATH  Google Scholar 

  10. Zhang X.C., Liu Q.W., Jia C.S., Wang L.Z.: Bound states of the Dirac equation with vector and scalar Scarf-type potentials. Phys. Lett. A 340, 59 (2005)

    Article  ADS  MATH  Google Scholar 

  11. Zhang M.C., Wang Z.B.: Bound states of relativistic particles in the second Pöschl-Teller potentials. Acta Phys. Sin. 55, 525 (2006)

    Google Scholar 

  12. Jia C.S., Guo P., Diao Y.F., Yi L.Z., Xie X.J.: Solutions of Dirac equations with the Pöschl-Teller potential. Eur. Phys. J. A 34, 41 (2007)

    Article  ADS  Google Scholar 

  13. Xu Y., He S., Jia C.S.: Approximate analytical solutions of the Dirac equation with the Pöschl–Teller potential including the spin-orbit coupling term. J. Phys. A: Math. Gen. 41, 255302 (2008)

    Article  MathSciNet  ADS  Google Scholar 

  14. Wei G.F., Dong S.H.: A novel algebraic approach to spin symmetry for Dirac equation with scalar and vector second Pöschl-Teller potentials. Eur. Phys. J. A 43, 185 (2010)

    Article  ADS  Google Scholar 

  15. Hassanabadi H., Yazarloo B.H., Lu L.L.: Approximate analytical solutions to the generalized Pöschl–Teller potential in D dimensions. Chin. Phys. Lett. 29, 020303 (2012)

    Article  ADS  Google Scholar 

  16. Chen C.Y., Lu F.L., You Y.: Scattering states of modified Pöschl-Teller potential in D-dimension. Chin. Phys. B 21, 030302 (2012)

    Article  ADS  Google Scholar 

  17. Chen, C.Y., You, Y., Lu, F.L.: Approximate analytical solutions of bound states for Schrödinger equation with modified Pöschl-Teller potential. Appl. Phys. 2, 82 (2012) (in Chinese)

    Google Scholar 

  18. Gradshteyn I.S., Ryzhik I.M.: Tables of Integrals, Series, and Products. Academic Press, New York (2007)

    Google Scholar 

  19. Lucha W., Schöberl F.F.: Solving the Schrödinger equation for bound states with mathematica 3.0. Int. J. Mod. Phys. C 10, 607 (1999)

    Article  ADS  MATH  Google Scholar 

  20. Qiang W.C., Li K., Chen W.L.: New bound and scattering state solutions of the Manning-Rosen potential with the centrifugal term. J. Phys. A 42, 205306 (2009)

    Article  MathSciNet  ADS  Google Scholar 

  21. Milne W.E.: The numerical determination of characteristic numbers. Phys. Rev. 35, 863 (1930)

    Article  ADS  Google Scholar 

  22. Wheeler J.A.: Wave functions for large arguments by the Amplitude-Phase Method. Phys. Rev. 52, 1123 (1937)

    Article  ADS  MATH  Google Scholar 

  23. Thylwe K.E.: A new amplitude-phase method for analyzing scattering solutions of the radial Dirac equation. J. Phys. A: Math. Gen. 41, 115304 (2008)

    Article  MathSciNet  ADS  Google Scholar 

  24. Thylwe K.E.: Amplitude-phase methods for analyzing the radial Dirac equation: calculation of scattering phase shifts. Phys. Scr. 77, 065005 (2008)

    Article  MathSciNet  ADS  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding authors

Correspondence to Chang-Yuan Chen or Shi-Hai Dong.

Rights and permissions

Reprints and permissions

About this article

Cite this article

You, Y., Lu, FL., Sun, DS. et al. Solutions of the Second Pöschl–Teller Potential Solved by an Improved Scheme to the Centrifugal Term. Few-Body Syst 54, 2125–2132 (2013). https://doi.org/10.1007/s00601-013-0725-y

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s00601-013-0725-y

Keywords

Navigation