Skip to main content
Log in

Nonsymmetrized Hyperspherical Harmonics with Realistic NN Potentials

Few-Body Systems Aims and scope Submit manuscript

Abstract

The Schrödinger equation is solved for an A-nucleon system using an expansion of the wave function in nonsymmetrized hyperspherical harmonics. Our approach is based on the formalism developed by Gattobigio et al. (Phys Rev A 79:032513, 2009; Few-Body Syst 45:127, 2009; Phys Rev C 83:024001, 2011), where it was applied to four- and six-body systems using central and central spin dependent potentials. In addition we include isospin dependence and noncentral forces in order to be able to make calculations also with more realistic NN potential models. Furthermore, a more efficient procedure to determine the fermionic spectrum is used. The approach is applied to four- and six-body nuclei (4He,6Li) with various NN potential models including for 4He the realistic AV18 potential. It is shown that the results for ground-state energy and radius agree well with those from the literature.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price includes VAT (France)

Instant access to the full article PDF.

Institutional subscriptions

References

  1. Gattobigio M., Kievsky A., Viviani M., Barletta P.: Harmonic hyperspherical basis for identical particles without permutational symmetry. Phys. Rev. A 79, 032513 (2009)

    Article  ADS  Google Scholar 

  2. Gattobigio M., Kievsky A., Viviani M., Barletta P.: Non-symmetrized basis function for identical particles. Few-Body Syst. 45, 127 (2009)

    Article  ADS  Google Scholar 

  3. Gattobigio M., Kievsky A., Viviani M.: Nonsymmetrized hyperspherical harmonic basis for an A-body system. Phys. Rev. C 83, 024001 (2011)

    Article  ADS  Google Scholar 

  4. Leidemann W., Orlandini G.: Modern ab initio approaches and applications in few-nucleon physics with A ≥ 4. Progr. Part. Nucl. Phys. 68, 158 (2013)

    Article  ADS  Google Scholar 

  5. Barnea N., Novoselsky A.: Hyperspherical wave functions with orthogonal and permutational symmetry. Phys. Rev. A 57, 48 (1998)

    Article  ADS  Google Scholar 

  6. Barnea N., Novoselsky A.: Construction of hyperspherical functions symmetrized with respect to the orthogonal and the symmetric groups. Ann. Phys. (NY) 256, 192 (1997)

    Article  MathSciNet  ADS  MATH  Google Scholar 

  7. Wiringa R.B., Stoks V.G.J., Schiavilla R.: Accurate nucleon–nucleon potential with charge-independence breaking. Phys. Rev. C 51, 38 (1995)

    Article  ADS  Google Scholar 

  8. Volkov A.B.: Equilibrium deformation calculations of the ground state energies of 1p shell nuclei. Nuclear Physics 74, 33 (1965)

    Article  ADS  Google Scholar 

  9. Gloeckner D.H., Lawson R.D.: Spurious center-of-mass motion. Phys. Lett. B 53, 313 (1974)

    Article  ADS  Google Scholar 

  10. Malfliet R.A., Tjon A.: Solution of the Faddeev equations for the triton problem using local two-particle interactions. Nucl. Phys. A 127, 161 (1969)

    Article  ADS  Google Scholar 

  11. Thomson D.R., LeMere M., Tang Y.C.: Systematic investigation of scattering problems with the resonating-group method. Nucl. Phys. A 286, 53 (1977)

    Article  ADS  Google Scholar 

  12. Wiringa R.B., Pieper S.C.: Evolution of nuclear spectra with nuclear forces. Phys. Rev. Lett. 89, 182501 (2002)

    Article  ADS  Google Scholar 

  13. Barnea N., Leidemann W., Orlandini G.: State dependent effective interaction for the hyperspherical formalism. Phys. Rev. C 61, 54001 (2000)

    Article  ADS  Google Scholar 

  14. Barnea N., Leidemann W., Orlandini G.: State-dependent effective interaction for the hyperspherical formalism with noncentral forces. Nucl. Phys. A 693, 565 (2001)

    Article  ADS  MATH  Google Scholar 

  15. Viviani M., Kievsky A., Rosati S.: Calculation of the α-particle ground state within the hyperspherical harmonic basis. Phys. Rev. C 71, 24006 (2005)

    Article  ADS  Google Scholar 

  16. Kievsky A., Rosati S., Viviani M., Marcucci L.E., Girlanda L.: A high-precision variational approach to three- and four-nucleon bound and zero-energy scattering states. J. Phys. G Nucl. Part. Phys. 35, 63101 (2008)

    Article  Google Scholar 

  17. Varga K., Suzuki Y.: Precise solution of few-body problems with the stochastic variational method on a correlated Gaussian basis. Phys. Rev. C 52, 2885 (1995)

    Article  ADS  Google Scholar 

  18. Barnea N., Efros V.D., Leidemann W., Orlandini G.: Total 4He photoabsorption cross section reexamined: correlated versus effective interaction hyperspherical harmonics. Phys. Rev. C 63, 057002 (2001)

    Article  ADS  Google Scholar 

  19. Gazit D., Bacca S., Barnea N., Leidemann W., Orlandini G.: Photoabsorption on 4He with a realistic nuclear force. Phys. Rev. Lett. 96, 112301 (2006)

    Article  ADS  Google Scholar 

  20. Nogga A., Kamada H., Glöckle W., Barrett B.R.: The α particle based on modern nuclear forces. Phys. Rev. C 65, 054003 (2002)

    Article  ADS  Google Scholar 

  21. Lazauskas R., Carbonell J.: Testing nonlocal nucleon–nucleon interactions in four-nucleon systems. Phys. Rev. C 70, 044002 (2004)

    Article  ADS  Google Scholar 

  22. Deltuva A., Fonseca A.C.: Four-nucleon scattering: ab initio calculations in momentum space. Phys. Rev. C 75, 014005 (2007)

    Article  ADS  Google Scholar 

  23. Barnea N., Leidemann W., Orlandini G.: Ground state wave functions in the hyperspherical formalism for nuclei with A > 4. Nucl. Phys. A 650, 427 (1999)

    Article  ADS  Google Scholar 

  24. Barnea N., Leidemann W., Orlandini G.: Improved effective interaction for the hyperspherical formalism. Phys. Rev. C 67, 54003 (2003)

    Article  ADS  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Winfried Leidemann.

Rights and permissions

Reprints and permissions

About this article

Cite this article

Deflorian, S., Barnea, N., Leidemann, W. et al. Nonsymmetrized Hyperspherical Harmonics with Realistic NN Potentials. Few-Body Syst 54, 1879–1887 (2013). https://doi.org/10.1007/s00601-013-0717-y

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s00601-013-0717-y

Keywords

Navigation