To What Extent is Gluon Confinement an Empirical Fact?

Abstract

Experimental verifications of confinement in hadron physics have established the absence of charges with a fraction of the electron’s charge by studying the energy deposited in ionization tracks at high energies, and performing Millikan experiments with charged droplets at rest. These experiments test only the absence of particles with fractional charge in the asymptotic spectrum, and thus “Quark” Confinement. However what theory suggests is that Color is confined, that is, all asymptotic particles are color singlets. Since QCD is a non-Abelian theory, the gluon force carriers (indirectly revealed in hadron jets) are colored. We empirically examine what can be said about gluon confinement based on the lack of detection of appropriate events, aiming at an upper bound for high-energy free-gluon production.

This is a preview of subscription content, log in to check access.

References

  1. 1

    Perl M.L., Lee E.R., Loomba D.: Searches for fractionally charged particles. Annu. Rev. Nucl. Part. Sci. 59, 47–65 (2009)

    ADS  Article  Google Scholar 

  2. 2

    Perl M.L., Lee E.R., Loomba D.: Review of particle physics. Mod. Phys. Lett. A. 19, 2595 (2004)

    ADS  Article  Google Scholar 

  3. 3

    Nakamura, K.: Particle Data Group Collaboration. J. Phys. G. G37, 075021 (2010)

  4. 4

    Bergsma, F., et al., CHARM collaboration.: Experimental limits on the production of fractionally charged particles in protonnucleus and neutrino-nucleus collisions. Zeit. Phys. C 24, 217 (1984)

  5. 5

    Stevenson M.L.: Search for massive, long-lived, fractionally charged particles produced by 300-GeV protons. Phys. Rev. D. 20, 82 (1979)

    ADS  Article  Google Scholar 

  6. 6

    Antreasyan D. et al.: Search for quarks produced with large transverse momentum in 400-GeV proton-nucleus collisions. Phys. Rev. Lett. 39, 513 (1977)

    ADS  Article  Google Scholar 

  7. 7

    Nash T. et al.: The IX International Conference on Quark Confinement and the Hadron Spectrum - QCHS-IX. In: Llanes-Estrada, F.J., Pelaez, J.R. (eds.) AIP Conference Proceedings, vol. 1343 (2011). Phys. Rev. Lett. 32, 858 (1974)

    ADS  Article  Google Scholar 

  8. 8

    See the collection of papers in the “Proceedings of the IXth International Conference on Quark Confinement and the Hadron Spectrum”, Madrid (2010)

  9. 9

    Alkofer, R., Detmold, W., Fischer, C.S., Maris, P.: Analytic properties of the Landau gauge gluon and quark propagators. Phys. Rev. D70, 014014 (2004). hep-ph/0309077

  10. 10

    Cucchieri, A., Mendes, T.: Constraints on the IR behavior of the gluon propagator in Yang-Mills theories. Phys. Rev. Lett. 100, 241601 (2008). arXiv:0712.3517 [hep-lat]

    Google Scholar 

  11. 11

    Fischer, C.S., Pawlowski, J.M.: Uniqueness of infrared asymptotics in Landau gauge Yang-Mills theory II. Phys. Rev. D80, 025023 (2009). arXiv:0903.2193 [hep-th]

  12. 12

    Aamodt, K., et al.: ALICE Collaboration. Production of pions, kaons and protons in pp collisions at sqrt(s)= 900 GeV with ALICE at the LHC, arXiv:1101.4110 [hep-ex]

  13. 13

    Swift A.R., Rodriguez Marrero J.L.: Color confinement and the Qcd vacuum. Phys. Rev. D29, 1823 (1984)

    ADS  Google Scholar 

  14. 14

    Sjöstrand, T., Mrenna, S., Skands, P.: Proceedings of Workshop on Physics at TeV Colliders, 2001. Les Houches, France. JHEP 05, 026 (2006)

  15. 15

    Sjöstrand, T., Mrenna, S., Skands, P.: Toward a universal random number generator. Comput. Phys. Commun. 178, 852 (2008)

    Google Scholar 

  16. 16

    Amsler, C.: Particle Data Group Collaboration. Phys. Lett. B. 667, 1 (2008)

  17. 17

    Boos, E., Dobbs, M., Giele, W., Hinchliffe, I., Huston, J., Ilyin, V., Kanzaki, J., Kato, K., et al.: Generic user process interface for event generators. hep-ph/0109068

  18. 18

    Marsaglia G., Zaman A., Tsang W.W.: A Nonperturbative parton model of current interactions. Stat. Probab. Lett. 9, 35 (1990)

    MathSciNet  Article  MATH  Google Scholar 

  19. 19

    Landshoff P.V., Polkinghorne J.C., Short R.D.: A Nonperturbative parton model of current interactions. Nucl. Phys. B28, 225–239 (1971)

    ADS  Article  Google Scholar 

  20. 20

    Brodsky S.J., Close F.E., Gunion J.F.: A gauge-invariant scaling model of current interactions with regge behavior and finite fixed pole sum rules. Phys. Rev. D D8, 3678 (1973)

    ADS  Article  Google Scholar 

  21. 21

    Szczepaniak, A.P., Londergan, J.T., Llanes-Estrada, F.J.: Regge exchange contribution to deeply virtual compton scattering. Acta Phys. Polon. B40, 2193–2223 (2009). arXiv:0707.1239 [hep-ph]

  22. 22

    Simonov Y,A.: Glueball Regge trajectories and the Pomeron. Phys. Lett. B,249, 514–518 (1990)

    ADS  Article  Google Scholar 

  23. 23

    Llanes-Estrada, F.J., Cotanch, S.R., de A. Bicudo, P.J., Ribeiro, J.E.F.T., Szczepaniak, A.P.: QCD glueball Regge trajectories and the Pomeron. Nucl. Phys. A710, 45–54 (2002). hep-ph/0008212

  24. 24

    Reisert, B., Vera, A.S., Zhang, Z.: Structure functions and low-x: Working Group Summary. 17th International Workshop On Deep-Inelastic Scattering and Related Subjects (DIS 2009), Madrid (2009). arXiv:0908.2194 [hep-ex]

  25. 25

    Pelaez, J.R., Yndurain, F.J.: Regge analysis of pion pion (and pion kaon) scattering for energy s**1/2 > 1.4-GeV. Phys. Rev. D69, 114001 (2004). hep-ph/0312187

  26. 26

    Pelaez, J.R.:Regge description of high energy pion pion total cross sections. Int. J. Mod. Phys. A 20, 628 (2005). arXiv:hep-ph/0407213

    Google Scholar 

  27. 27

    Doyle, A.T.: Diffraction at HERA: Experimental perspective. J.Phys. G G22, 797–814 (1996). hep-ex/9601005

  28. 28

    Musulmanbekov, G.: NICA Collaboration, The NICA/MPD project at JINR. Nucl. Phys. A. 862–863, 244 (2011)

  29. 29

    Bashir, A., Chang, L., Cloet, I.C., El-Bennich, B., Liu, Y.X., Roberts, C.D., Tandy, P.C.: Collective perspective on advances in Dyson-Schwinger Equation QCD. Commun. Theor. Phys. 58, 79 (2012). arXiv:1201.3366 [nucl-th]

    Google Scholar 

Download references

Author information

Affiliations

Authors

Corresponding author

Correspondence to Felipe J. Llanes-Estrada.

Rights and permissions

Reprints and Permissions

About this article

Cite this article

Delgado, R.L., Hidalgo-Duque, C. & Llanes-Estrada, F.J. To What Extent is Gluon Confinement an Empirical Fact?. Few-Body Syst 54, 1705–1717 (2013). https://doi.org/10.1007/s00601-012-0500-5

Download citation

Keywords

  • Color Factor
  • Gluon Propagator
  • Color Singlet
  • Neutron Background
  • Secondary Proton