AEGIS at CERN: Measuring Antihydrogen Fall


The main goal of the AEGIS experiment at the CERN Antiproton Decelerator is testing fundamental laws such as the weak equivalence principle (WEP) and the CPT symmetry. In the first phase of AEGIS, a beam of antihydrogen will be formed whose fall in the gravitational field is measured in a Moirè deflectometer; this will constitute the first test of the WEP with antimatter.

This is a preview of subscription content, access via your institution.


  1. 1

    Kellerbauer A. et al.: Proposed antimatter gravity measurement with an antihydrogen beam. Nucl. Instr. Methods B 266, 351 (2008)

    ADS  Article  Google Scholar 

  2. 2

    Mavromatos N.E.: CPT violation: theory and phenomenology. In: Hirtl, A., Marton, J., Widmann, E., Zmeskal, J. (eds) International Conference on Exotic Atoms and Related Topics, Austrian Academy of Sciences, Vienna (2006)

    Google Scholar 

  3. 3

    Kosteleckỳ, V.A., Russell, N.: Data tables for Lorentz and CPT violation. arXiv:0801.0287v3 (2010)

  4. 4

    Schlamminger S. et al.: Test of the equivalence principle using a rotating torsion balance. Phys. Rev. Lett. 100, 041101 (2008)

    ADS  Article  Google Scholar 

  5. 5

    Will J.G. et al.: Progress in lunar laser ranging tests of relativistic gravity. Phys. Rev. Lett. 93, 261101 (2004)

    ADS  Article  Google Scholar 

  6. 6

    Warring U. et al.: High-resolution laser spectroscopy on the negative osmium ion. Phys. Rev. Lett. 102, 043001 (2009)

    ADS  Article  Google Scholar 

  7. 7

    Lizkay L. et al.: Positronium reemission yield from mesostructured silica films. Appl. Phys. Lett. 92, 063114 (2008)

    ADS  Article  Google Scholar 

  8. 8

    Mariazzi S. et al.: Positronium cooling into nanopores and nanochannels by phonon scattering. Phys. Rev. B 68, 085428 (2008)

    ADS  Article  Google Scholar 

  9. 9

    Mariazzi S. et al.: Positronium cooling and emission in vacuum from nano-channels at cryogenic temperature. Phys Rev. Lett. 104, 243401 (2010)

    ADS  Article  Google Scholar 

  10. 10

    Ferragut R. et al.: Antihydrogen physics: gravitation and spectroscopy in Aegis. J. Phys. Conf. Ser. 225, 012007 (2010)

    ADS  Article  Google Scholar 

  11. 11

    Castelli F. et al.: Efficient positronium laser excitation for antihydrogen production in a megnetic field. Phys. Rev. A 78, 052512 (2008)

    ADS  Article  Google Scholar 

  12. 12

    Cialdi S. et al.: Efficient two-step positronium laser excitation to Rydberg levels. Nucl. Instr. Methods B 269, 1527 (2011)

    ADS  Article  Google Scholar 

  13. 13

    Vliegen E. et al.: Stark deceleration and trapping of hydrogen Rydberg atoms. Phys. Rev. A 76, 023405 (2007)

    ADS  Article  Google Scholar 

  14. 14

    Oberthaler M.K. et al.: Inertial sensing with classical atomic beams. Phys. Rev. A 54, 3165 (1996)

    ADS  Article  Google Scholar 

  15. 15

    Kafri O.: Noncoherent method for mapping phase objects. Opt. Lett. 5, 555 (1980)

    ADS  Article  Google Scholar 

Download references

Author information




Corresponding author

Correspondence to Marco G. Giammarchi.

Additional information

The members of AEGIS Collaboration are listed in Appendix.

Rights and permissions

Reprints and Permissions

About this article

Cite this article

Giammarchi, M.G., AEGIS Collaboration. AEGIS at CERN: Measuring Antihydrogen Fall. Few-Body Syst 54, 779–782 (2013).

Download citation


  • Rydberg State
  • Antihydrogen
  • Gravity Measurement
  • Positronium Formation
  • Antihydrogen Atom