Skip to main content
Log in

Light-Front Holography, Light-Front Wavefunctions, and Novel QCD Phenomena

  • Published:
Few-Body Systems Aims and scope Submit manuscript

Abstract

Light-front holography is one of the most remarkable features of the AdS/CFT correspondence. In spite of its present limitations, it provides important physical insights into the non-perturbative regime of QCD and its transition to the perturbative domain. This novel framework allows hadronic amplitudes in a higher dimensional anti-de Sitter (AdS) space to be mapped to frame-independent light-front wavefunctions of hadrons in physical space–time. The model leads to an effective confining light-front QCD Hamiltonian and a single-variable light-front Schrödinger equation which determines the eigenspectrum and the light-front wavefunctions of hadrons for general spin and orbital angular momentum. The coordinate z in AdS space is uniquely identified with a Lorentz-invariant coordinate ζ which measures the separation of the constituents within a hadron at equal light-front time and determines the off-shell dynamics of the bound-state wavefunctions, and thus the fall-off as a function of the invariant mass of the constituents. The soft-wall holographic model modified by a positive-sign dilaton metric, leads to a remarkable one-parameter description of nonperturbative hadron dynamics—a semi-classical frame-independent first approximation to the spectra and light-front wavefunctions of meson and baryons. The model predicts a Regge spectrum of linear trajectories with the same slope in the leading orbital angular momentum L of hadrons and the radial quantum number n. The hadron eigensolutions projected on the free Fock basis provides the complete set of valence and non-valence light-front Fock state wavefunctions \({\Psi_{n/H}(x_i, {\mathbf{k}_{\perp{i}}}, \lambda_i)}\) which describe the hadron’s momentum and spin distributions needed to compute the direct measures of hadron structure at the quark and gluon level, such as elastic and transition form factors, distribution amplitudes, structure functions, generalized parton distributions and transverse momentum distributions. The effective confining potential also creates quark–antiquark pairs from the amplitude \({q \to {q}\bar{q}{q}}\) . Thus in holographic QCD higher Fock states can have any number of extra \({q{\bar{q}}}\) pairs. We discuss the relevance of higher Fock-states for describing the detailed structure of space and time-like form factors. The AdS/QCD model can be systematically improved by using its complete orthonormal solutions to diagonalize the full QCD light-front Hamiltonian or by applying the Lippmann–Schwinger method in order to systematically include the QCD interaction terms. A new perspective on quark and gluon condensates is also obtained.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Institutional subscriptions

Similar content being viewed by others

References

  1. Dirac P.A.M.: Forms of relativistic dynamics. Rev. Mod. Phys. 21, 392 (1949)

    Article  MathSciNet  ADS  MATH  Google Scholar 

  2. Hoodbhoy P., Ji X.-D., Lu W.: Implications of color gauge symmetry for nucleon spin structure. Phys. Rev. D 59, 074010 (1999) arXiv:hep-ph/9808305

    Article  ADS  Google Scholar 

  3. Brodsky S.J., Primack J.R.: The electromagnetic interactions of composite systems. Ann. Phys. 52, 315 (1969)

    Article  ADS  Google Scholar 

  4. Brodsky S.J., Hwang D.S., Ma B.Q., Schmidt I.: Light cone representation of the spin and orbital angular momentum of relativistic composite systems. Nucl. Phys. B 593, 311 (2001) arXiv:hep-th/0003082

    Article  ADS  MATH  Google Scholar 

  5. Pauli H.C., Brodsky S.J.: Discretized light cone quantization: solution to a field theory in one space one time dimensions. Phys. Rev. D 32, 2001 (1985)

    Article  MathSciNet  ADS  Google Scholar 

  6. Hornbostel K., Brodsky S.J., Pauli H.C.: Light cone quantized QCD in (1+1)-dimensions. Phys. Rev. D 41, 3814 (1990)

    Article  ADS  Google Scholar 

  7. de Teramond G.F., Brodsky S.J.: Light-front holography: a first approximation to QCD. Phys. Rev. Lett. 102, 081601 (2009) arXiv:0809.4899 [hep-ph]

    Article  ADS  Google Scholar 

  8. Maldacena J.M.: The large N limit of superconformal field theories and supergravity. Adv. Theor. Math. Phys. 2, 231 (1998) arXiv:hep-th/9711200

    MathSciNet  ADS  MATH  Google Scholar 

  9. Polchinski J., Strassler M.J.: Hard scattering and gauge/string duality. Phys. Rev. Lett. 88, 031601 (2002) arXiv:hep-th/0109174

    Article  MathSciNet  ADS  Google Scholar 

  10. Brodsky S.J., de Teramond G.F.: Hadronic spectra and light-front wavefunctions in holographic QCD. Phys. Rev. Lett. 96, 201601 (2006) arXiv:hep-ph/0602252

    Article  ADS  Google Scholar 

  11. Brodsky S.J., de Teramond G.F.: Light-front dynamics and AdS/QCD correspondence: the pion form factor in the space- and time-like regions. Phys. Rev. D 77, 056007 (2008) arXiv:0707.3859 [hep-ph]

    Article  ADS  Google Scholar 

  12. Brodsky S.J., de Teramond G.F.: Light-front dynamics and AdS/QCD correspondence: gravitational form factors of composite hadrons. Phys. Rev. D 78, 025032 (2008) arXiv:0804.0452 [hep-ph]

    Article  ADS  Google Scholar 

  13. Brodsky S.J., de Teramond G.F., Deur A.: Nonperturbative QCD coupling and its β-function from light-front holography. Phys. Rev. D 81, 096010 (2010) arXiv:1002.3948 [hep-ph]

    Article  ADS  Google Scholar 

  14. Casher A., Susskind L.: Chiral magnetism (or magnetohadrochironics). Phys. Rev. D 9, 436 (1974)

    Article  ADS  Google Scholar 

  15. Brodsky S.J., Shrock R.: Condensates in quantum chromodynamics and the cosmological constant. Proc. Natl. Acad. Sci. 108, 45 (2011) arXiv:0905.1151 [hep-th]

    Article  ADS  Google Scholar 

  16. Srivastava P.P., Brodsky S.J.: A unitary and renormalizable theory of the standard model in ghost free light cone gauge. Phys. Rev. D 66, 045019 (2002) arXiv:hep-ph/0202141

    Article  ADS  Google Scholar 

  17. Srivastava P.P., Brodsky S.J.: Light front quantized QCD in covariant gauge. Phys. Rev. D 61, 025013 (2000) arXiv:hep-ph/9906423

    Article  ADS  Google Scholar 

  18. Motyka L., Stasto A.M.: Exact kinematics in the small x evolution of the color dipole and gluon cascade. Phys. Rev. D 79, 085016 (2009) arXiv:0901.4949 [hep-ph]

    Article  ADS  Google Scholar 

  19. Brodsky S.J., Roskies R., Suaya R.: Quantum electrodynamics and renormalization theory in the infinite momentum frame. Phys. Rev. D 8, 4574 (1973)

    Article  ADS  Google Scholar 

  20. Teryaev, O.V.: Spin structure of nucleon and equivalence principle. arXiv:hep-ph/9904376

  21. Brodsky S.J., Ji C.R.: Factorization property of the deuteron. Phys. Rev. D 33, 2653 (1986)

    Article  ADS  Google Scholar 

  22. Brodsky, S.J., Llanes-Estrada, F.J., Londergan, J.T., Szczepaniak, A.P.: Reggeon non-factorizability and the J=0 fixed pole in DVCS. arXiv:0906.5515 [hep-ph]

  23. Danielewicz P., Namyslowski J.M.: Relativistic repulsive effects in nonrelativistic systems. Phys. Lett. B 81, 110 (1979)

    Article  ADS  Google Scholar 

  24. Karmanov V.A.: Light front wave function of relativistic composite system in explicitly solvable model. Nucl. Phys. B 166, 378 (1980)

    Article  MathSciNet  ADS  Google Scholar 

  25. Glazek S.D.: Relativistic effects in the deuteron binding energy. Acta Phys. Polon. B 15, 889 (1984)

    Google Scholar 

  26. Parisi G.: Conformal invariance in perturbation theory. Phys. Lett. B 39, 643 (1972)

    Article  MathSciNet  ADS  Google Scholar 

  27. Brodsky, S.J., de Teramond, G.F.: AdS/CFT and light-front QCD. arXiv:0802.0514[hep-ph]

  28. Brodsky, S.J., Dosch, H.G., de Teramond, G.F.: Higher integer and half-integer spin wave equations in holographic QCD. In preparation

  29. Gutsche, T., Lyubovitskij, V.E., Schmidt, I., Vega, A.: Dilaton in a soft-wall holographic approach to mesons and baryons. arXiv:1108.0346[hep-ph]

  30. de Teramond G.F., Brodsky S.J.: Gauge/gravity duality and hadron physics at the light-front. AIP Conf. Proc. 1296, 128 (2010) arXiv:1006.2431[hep-ph]

    Article  ADS  Google Scholar 

  31. Breitenlohner P., Freedman D.Z.: Stability in gauged extended supergravity. Ann. Phys. 144, 249 (1982)

    Article  MathSciNet  ADS  MATH  Google Scholar 

  32. Karch A., Katz E., Son D.T., Stephanov M.A.: Linear confinement and AdS/QCD. Phys. Rev. D 74, 015005 (2006) arXiv:hep-ph/0602229

    Article  ADS  Google Scholar 

  33. de Teramond G.F., Brodsky S.J.: Light-front holography and gauge/gravity duality: the light meson and baryon spectra. Nucl. Phys. B, Proc. Suppl. 199, 89 (2010) arXiv:0909.3900[hep-ph]

    Article  ADS  Google Scholar 

  34. Andreev O., Zakharov V.I.: Heavy-quark potentials and AdS/QCD. Phys. Rev. D 74, 025023 (2006) arXiv:hep-ph/0604204

    Article  ADS  Google Scholar 

  35. Amsler C. et al.: Particle data group. Review of particle physics. Phys. Lett. B 667, 1 (2008)

    Article  ADS  Google Scholar 

  36. Polchinski J., Strassler M.J.: Deep inelastic scattering and gauge/string duality. JHEP 0305, 012 (2003) arXiv:hep-th/0209211

    Article  MathSciNet  ADS  Google Scholar 

  37. Soper D.E.: The Parton model and the Bethe-Salpeter wave function. Phys. Rev. D 15, 1141 (1977)

    Article  ADS  Google Scholar 

  38. Drell S.D., Yan T.M.: Connection of elastic electromagnetic nucleon form-factors at large Q**2 and deep inelastic structure functions near threshold. Phys. Rev. Lett. 24, 181 (1970)

    Article  ADS  Google Scholar 

  39. West G.B.: Phenomenological model for the electromagnetic structure of the proton. Phys. Rev. Lett. 24, 1206 (1970)

    Article  ADS  Google Scholar 

  40. Erlich J., Katz E., Son D.T., Stephanov M.A.: QCD and a holographic model of hadrons. Phys. Rev. Lett. 95, 261602 (2005) arXiv:hep-ph/0501128

    Article  ADS  Google Scholar 

  41. Da Rold L., Pomarol A.: Chiral symmetry breaking from five dimensional spaces. Nucl. Phys. B 721, 79 (2005) arXiv:hep-ph/0501218

    Article  ADS  MATH  Google Scholar 

  42. Baldini R., Dubnicka S., Gauzzi P., Pacetti S., Pasqualucci E., Srivastava Y.: Nucleon timelike form-factors below the N anti-N threshold. Eur. Phys. J. C 11, 709 (1999)

    ADS  Google Scholar 

  43. Tadevosyan, V., et al.: [Jefferson Lab F(pi) Collaboration] Determination of the pion charge form-factor for Q 2 =  0.60 − GeV2 − 1.60 − GeV2. Phys. Rev. C 75, 055205 (2007). arXiv:nucl-ex/0607007

    Google Scholar 

  44. Horn, T., et al.: [Jefferson Lab F(pi)-2 Collaboration] Determination of the charged pion form factor at Q 2 =  1.60 and 2.45 − (GeV/c)2. Phys. Rev. Lett. 97, 192001 (2006). arXiv:nucl-ex/0607005

    Google Scholar 

  45. Brodsky, S.J., Cao, F.G., de Teramond, G.F.: Meson transition form factors in light-front holographic QCD. arXiv:1105.3999 [hep-ph]

  46. Vega A., Schmidt I., Gutsche T., Lyubovitskij V.E.: Generalized parton distributions in AdS/QCD. Phys. Rev. D 83, 036001 (2011) arXiv:1010.2815 [hep-ph]

    Article  ADS  Google Scholar 

  47. Nishio, R., Watari, T.: Investigating generalized parton distribution in gravity dual. arXiv:1105.2907 [hep-ph]

  48. de Teramond G.F., Brodsky S.J.: Light-front quantization approach to the gauge-gravity correspondence and Hadron spectroscopy. AIP Conf. Proc. 1257, 59 (2010) arXiv:1001.5193 [hep-ph]

    Article  ADS  Google Scholar 

  49. de Teramond G.F., Brodsky S.J.: The hadronic spectrum of a holographic dual of QCD. Phys. Rev. Lett. 94, 201601 (2005) arXiv:hep-th/0501022

    Article  ADS  Google Scholar 

  50. de Paula W., Frederico T., Forkel H., Beyer M.: Dynamical AdS/QCD with area-law confinement and linear Regge trajectories. Phys. Rev. D 79, 075019 (2009) arXiv:0806.3830 [hep-ph]

    Article  ADS  Google Scholar 

  51. Hong D.K., Inami T., Yee H.U.: Baryons in AdS/QCD. Phys. Lett. B 646, 165 (2007) arXiv:hep-ph/0609270

    Article  ADS  Google Scholar 

  52. Forkel H., Beyer M., Frederico T.: Linear square-mass trajectories of radially and orbitally excited hadrons in holographic QCD. JHEP 0707, 077 (2007) arXiv:0705.1857 [hep-ph]

    Article  ADS  Google Scholar 

  53. Nawa, K., Suganuma, H., Kojo, T.: Baryons with holography. Mod. Phys. Lett. A 23, 2364 (2008). arXiv:0806.3040 [hep-th]

    Article  ADS  Google Scholar 

  54. Forkel H., Klempt E.: Diquark correlations in baryon spectroscopy and holographic QCD. Phys. Lett. B 679, 77 (2009) arXiv:0810.2959 [hep-ph]

    Article  ADS  Google Scholar 

  55. Ahn H.C., Hong D.K., Park C., Siwach S.: Spin 3/2 baryons and form factors in AdS/QCD. Phys. Rev. D 80, 054001 (2009) arXiv:0904.3731 [hep-ph]

    Article  ADS  Google Scholar 

  56. Zhang P.: Improving the excited nucleon spectrum in hard-wall AdS/QCD. Phys. Rev. D 81, 114029 (2010) arXiv:1002.4352 [hep-ph]

    Article  ADS  Google Scholar 

  57. Kirchbach M., Compean C.B.: Conformal symmetry and light flavor baryon spectra. Phys. Rev. D 82, 034008 (2010) arXiv:1003.1747 [hep-ph]

    Article  ADS  Google Scholar 

  58. Klempt E., Zaitsev A.: Glueballs, hybrids, multiquarks. Experimental facts versus QCD inspired concepts. Phys. Rept. 454, 1 (2007) arXiv:0708.4016 [hep-ph]

    Google Scholar 

  59. Grigoryan H.R., Radyushkin A.V.: Structure of vector mesons in holographic model with linear confinement. Phys. Rev. D 76, 095007 (2007) arXiv:0706.1543 [hep-ph]

    Article  ADS  Google Scholar 

  60. de Teramond, G.F., Brodsky S.J.: Excited baryons in holographic QCD. arXiv:1108.0965 [hep-ph]

  61. Diehl M.: Generalized parton distributions from form-factors. Nucl. Phys. Proc. Suppl. 161, 49 (2006) arXiv:hep-ph/0510221

    Article  ADS  Google Scholar 

  62. Aznauryan, I.G., et al.: [CLAS Collaboration] Electroexcitation of nucleon resonances from CLAS data on single pion electroproduction. Phys. Rev. C 80, 055203 (2009). arXiv:0909.2349 [nucl-ex]

    Google Scholar 

  63. Brodsky, S.J., de Teramond, G.F., Deur, A.: The AdS/QCD correspondence and exclusive processes. arXiv:1007.5385 [hep-ph]

  64. Gunion J.F., Brodsky S.J., Blankenbecler R.: Composite theory of inclusive scattering at large transverse momenta. Phys. Rev. D 6, 2652 (1972)

    Article  ADS  Google Scholar 

  65. Baller B.R., Blazey G.C., Courant H. et al.: Comparison of exclusive reactions at large t. Phys. Rev. Lett. 60, 1118–1121 (1988)

    Article  ADS  Google Scholar 

  66. de Teramond, G.F., Brodsky, S.J.: Gauge/gravity duality and strongly coupled light-front dynamics. PoS LC2010, 029 (2010). arXiv:1010.1204 [hep-ph]

  67. Brodsky S.J., Schmidt I., Yang J.J.: Nuclear antishadowing in neutrino deep inelastic scattering. Phys. Rev. D 70, 116003 (2004) arXiv:hep-ph/0409279

    Article  ADS  Google Scholar 

  68. Schienbein, I., Yu, J.Y., Keppel, C., Morfin, J.G., Olness, F.I., Owens, J.F.: Parton distribution function uncertainties and nuclear corrections for the LHC. arXiv:0806.0723 [hep-ph]

  69. Brodsky S.J., Hwang D.S., Schmidt I.: Final state interactions and single spin asymmetries in semi-inclusive deep inelastic scattering. Phys. Lett. B 530, 99 (2002) arXiv:hep-ph/0201296

    Article  ADS  Google Scholar 

  70. Collins J.C.: Leading twist single transverse-spin asymmetries: Drell-Yan and deep inelastic scattering. Phys. Lett. B 536, 43 (2002) arXiv:hep-ph/0204004

    Article  ADS  Google Scholar 

  71. Brodsky S.J., Hwang D.S., Schmidt I.: Initial state interactions and single spin asymmetries in Drell-Yan processes. Nucl. Phys. B 642, 344 (2002) arXiv:hep-ph/0206259

    Article  Google Scholar 

  72. Brodsky, S.J., Hoyer, P., Marchal, N., Peigne, S., Sannino, F.: Structure functions are not parton probabilities. Phys. Rev. D 65, 114025 (2002). arXiv:hep-ph/0104291

    Article  ADS  Google Scholar 

  73. Adloff, C., et al.: [H1 Collaboration] Inclusive measurement of diffractive deep inelastic ep scattering. Z. Phys. C 76, 613 (1997). arXiv:hep-ex/9708016

    Google Scholar 

  74. Breitweg, J., et al.: [ZEUS Collaboration] Measurement of the diffractive cross-section in deep inelastic scattering using ZEUS 1994 data. Eur. Phys. J. C 6, 43 (1999). arXiv:hep-ex/9807010

    Google Scholar 

  75. Brodsky S.J.: Dynamic versus static hadronic structure functions. Nucl Phys A 827, 327C (2009) arXiv:0901.0781 [hep-ph]

    Article  ADS  Google Scholar 

  76. Collins J., Qiu J.W.: k T factorization is violated in production of high-transverse-momentum particles in hadron-hadron collisions. Phys. Rev. D 75, 114014 (2007) arXiv:0705.2141 [hep-ph]

    Article  ADS  Google Scholar 

  77. Boer D., Brodsky S.J., Hwang D.S.: Initial state interactions in the unpolarized Drell-Yan process. Phys. Rev. D 67, 054003 (2003) arXiv:hep-ph/0211110

    Article  ADS  Google Scholar 

  78. Boer D.: Investigating the origins of transverse spin asymmetries at RHIC. Phys. Rev. D 60, 014012 (1999) arXiv:hep-ph/9902255

    Article  ADS  Google Scholar 

  79. Brodsky S.J., Hoyer P., Peterson C., Sakai N.: The intrinsic charm of the proton. Phys. Lett. B 93, 451 (1980)

    Article  ADS  Google Scholar 

  80. Brodsky, S.J., Collins, J.C., Ellis, S.D., Gunion, J.F., Mueller, A.H.: Intrinsic Chevrolets at the SSC. Published in Snowmass Summer Study (1984)

  81. Harris B.W., Smith J., Vogt R.: Reanalysis of the EMC charm production data with extrinsic and intrinsic charm at NLO. Nucl. Phys. B 461, 181 (1996) arXiv:hep-ph/9508403

    Article  ADS  Google Scholar 

  82. Franz M., Polyakov M.V., Goeke K.: Heavy quark mass expansion and intrinsic charm in light hadrons. Phys. Rev. D 62, 074024 (2000) arXiv:hep-ph/0002240

    Article  ADS  Google Scholar 

  83. Brodsky S.J., Kopeliovich B., Schmidt I., Soffer J.: Diffractive Higgs production from intrinsic heavy flavors in the proton. Phys. Rev. D 73, 113005 (2006) arXiv:hep-ph/0603238

    Article  ADS  Google Scholar 

  84. Sivers D.W., Brodsky S.J., Blankenbecler R.: Large transverse momentum processes. Phys. Rept. 23, 1 (1976)

    Article  ADS  Google Scholar 

  85. Brodsky, S.J., Rijssenbeek, M.: XIth international conference on elastic and diffractive scattering in Chateau de Blois, France, May 15–20, 2005: conference summary. arXiv:hep-ph/0511178

  86. Arleo F., Brodsky S.J., Hwang D.S., Sickles A.M.: Higher-twist dynamics in large transverse momentum hadron production. Phys. Rev. Lett. 105, 062002 (2010) arXiv:0911.4604 [hep-ph]

    Article  ADS  Google Scholar 

  87. Arleo, F., Brodsky, S.J., Hwang, D.S., Sickles, A.M.: Higher-twist contributions to large \({p_\perp}\) hadron production in hadronic collisions. arXiv:1006.4045 [hep-ph]

  88. Cronin J.W., Frisch H.J., Shochet M.J., Boymond J.P., Piroue P.A., Sumner R.L.: Production of hadrons with large transverse momentum at 200-GeV and 300-GeV. Phys. Rev. Lett. 31, 1426 (1973)

    Article  ADS  Google Scholar 

  89. Antreasyan D., Cronin J.W., Frisch H.J., Shochet M.J., Kluberg L., Piroue P.A., Sumner R.L.: Production of hadrons at large transverse momentum in 200-GeV, 300-GeV and 400-GeV p p and p n collisions. Phys. Rev. D 19, 764 (1979)

    Article  ADS  Google Scholar 

  90. Brodsky S.J., Sickles A.: The Baryon anomaly: evidence for color transparency and Direct hadron production at RHIC. Phys. Lett. B 668, 111 (2008) arXiv:0804.4608 [hep-ph]

    Article  ADS  Google Scholar 

  91. Adler, S.S., et al.: [PHENIX Collaboration] Scaling properties of proton and anti-proton production in \({\sqrt{s_{NN}} = 200}\) -GeV Au+Au collisions. Phys. Rev. Lett. 91, 172301 (2003). arXiv:nucl-ex/0305036

    Google Scholar 

  92. Blankenbecler R., Brodsky S.J., Gunion J.F.: Analysis of particle production at large transverse momentum. Phys. Rev. D 12, 3469 (1975)

    Article  ADS  Google Scholar 

  93. Brodsky, S.J., Di Giustino, L.: Setting the renormalization scale in QCD: the principle of maximum conformality. arXiv:1107.0338 [hep-ph]

  94. Brodsky S.J., Lepage G.P., Mackenzie P.B.: On the elimination of scale ambiguities in perturbative quantum chromodynamics. Phys. Rev. D 28, 228 (1983)

    Article  ADS  Google Scholar 

  95. Brodsky S.J., Gabadadze G.T., Kataev A.L., Lu H.J.: The generalized Crewther relation in QCD and its experimental consequences. Phys. Lett. B 372, 133 (1996) arXiv:hep-ph/9512367

    Article  ADS  Google Scholar 

  96. Brodsky S.J., Lu H.J.: Commensurate scale relations in quantum chromodynamics. Phys. Rev. D 51, 3652 (1995) arXiv:hep-ph/9405218

    Article  ADS  Google Scholar 

  97. Brodsky S.J., Gardi E., Grunberg G., Rathsman J.: Disentangling running coupling and conformal effects in QCD. Phys. Rev. D 63, 094017 (2001) arXiv:hep-ph/0002065

    Article  ADS  Google Scholar 

  98. Brodsky S.J., Shrock R.: Maximum wavelength of confined quarks and gluons and properties of quantum chromodynamics. Phys. Lett. B 666, 95 (2008) arXiv:0806.1535 [hep-th]

    Article  ADS  Google Scholar 

  99. Brodsky S.J., Roberts C.D., Shrock R., Tandy P.C.: New perspectives on the quark condensate. Phys. Rev. C 82, 022201 (2010) arXiv:1005.4610 [nucl-th]

    Article  ADS  Google Scholar 

  100. Brodsky S.J., Chertok B.T.: The asymptotic form-factors of hadrons and nuclei and the continuity of particle and nuclear dynamics. Phys. Rev. D 14, 3003 (1976)

    Article  ADS  Google Scholar 

  101. Matveev V.A., Sorba P.: Is deuteron a six quark system?. Lett. Nuovo Cim. 20, 435 (1977)

    Article  Google Scholar 

  102. Brodsky S.J., Ji C.R., Lepage G.P.: Quantum chromodynamic predictions for the deuteron form-factor. Phys. Rev. Lett. 51, 83 (1983)

    Article  ADS  Google Scholar 

  103. Arnold R.G. et al.: Measurement of the electron-deuteron elastic scattering cross-section in the range 0.8−GeV2q 2 <  6−GeV2. Phys. Rev. Lett. 35, 776 (1975)

    Article  ADS  Google Scholar 

  104. Farrar G.R., Huleihel K., Zhang H.y.: Deuteron form-factor. Phys. Rev. Lett. 74, 650 (1995)

    Article  ADS  Google Scholar 

  105. Brodsky S.J., Llanes-Estrada F.J., Szczepaniak A.P.: Local two-photon couplings and the J=0 fixed pole in real and virtual compton scattering. Phys. Rev. D 79, 033012 (2009) arXiv:0812.0395 [hep-ph]

    Article  ADS  Google Scholar 

  106. Brodsky S.J., Close F.E., Gunion J.F.: Compton scattering and fixed poles in parton field theoretic models. Phys. Rev. D 5, 1384 (1972)

    Article  ADS  Google Scholar 

  107. Brodsky S.J., Close F.E., Gunion J.F.: A gauge-invariant scaling model of current interactions with Regge behavior and finite pole sum rules. Phys. Rev. D 8, 3678 (1973)

    Article  ADS  Google Scholar 

  108. Brodsky S.J., Close F.E., Gunion J.F.: Phenomenology of photon processes, vector dominance and crucial tests for parton models. Phys. Rev. D 6, 177 (1972)

    Article  ADS  Google Scholar 

  109. Brodsky S.J., Shrock R.: Standard-model condensates and the cosmological constant. Proc. Natl. Acad. Sci. 108, 45 (2011) arXiv:0803.2554 [hep-th]

    Article  ADS  Google Scholar 

  110. Maris P., Roberts C.D., Tandy P.C.: Pion mass and decay constant. Phys. Lett. B 420, 267 (1998) arXiv:nucl-th/9707003

    Article  ADS  Google Scholar 

  111. Maris P., Roberts C.D.: Pi- and K meson Bethe-Salpeter amplitudes. Phys. Rev. C 56, 3369 (1997) arXiv:nucl-th/9708029

    Article  ADS  Google Scholar 

  112. Ioffe B.L., Zyablyuk K.N.: Gluon condensate in charmonium sum rules with three loop corrections. Eur. Phys. J. C 27, 229 (2003) arXiv:hep-ph/0207183

    Article  ADS  Google Scholar 

  113. Davier M., Hocker A., Zhang Z.: ALEPH Tau spectral functions and QCD. Nucl. Phys. Proc. Suppl. 169, 22 (2007) arXiv:hep-ph/0701170

    Article  ADS  Google Scholar 

  114. Davier M., Descotes-Genon S., Hocker A., Malaescu B., Zhang Z.: The determination of alpha(s) from Tau decays revisited. Eur. Phys. J. C 56, 305 (2008) arXiv:0803.0979 [hep-ph]

    Article  ADS  Google Scholar 

  115. Chodos A., Thorn C.B.: Chiral hedgehogs in the bag theory. Phys. Rev. D 12, 2733 (1975)

    Article  ADS  Google Scholar 

  116. Brown G.E., Rho M.: The little bag. Phys. Lett. B 82, 177 (1979)

    Article  ADS  Google Scholar 

  117. Hosaka A., Toki H.: Chiral bag model for the nucleon. Phys. Rept. 277, 65 (1996)

    Article  ADS  Google Scholar 

  118. Branz T., Gutsche T., Lyubovitskij V.E., Schmidt I., Vega A.: Light and heavy mesons in a soft-wall holographic approach. Phys. Rev. D 82, 074022 (2010) arXiv:1008.0268 [hep-ph]

    Article  ADS  Google Scholar 

  119. Vary J.P. et al.: Hamiltonian light-front field theory in a basis function approach. Phys. Rev. C 81, 035205 (2010) arXiv:0905.1411 [nucl-th]

    Article  ADS  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Guy F. de Teramond.

Rights and permissions

Reprints and permissions

About this article

Cite this article

Brodsky, S.J., de Teramond, G.F. Light-Front Holography, Light-Front Wavefunctions, and Novel QCD Phenomena. Few-Body Syst 52, 203–222 (2012). https://doi.org/10.1007/s00601-011-0290-1

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s00601-011-0290-1

Keywords

Navigation