Few-Body Systems

, Volume 52, Issue 3–4, pp 345–355 | Cite as

Looking into the Matter of Light-Quark Hadrons



In tackling QCD, a constructive feedback between theory and extant and forthcoming experiments is necessary in order to place constraints on the infrared behaviour of QCD’s β-function, a key nonperturbative quantity in hadron physics. The Dyson–Schwinger equations provide a tool with which to work toward this goal. They connect confinement with dynamical chiral symmetry breaking, both with the observable properties of hadrons, and hence can plausibly provide a means of elucidating the material content of real-world QCD. This contribution illustrates these points via comments on: in-hadron condensates; dressed-quark anomalous chromo- and electro-magnetic moments; the spectra of mesons and baryons, and the critical role played by hadron-hadron interactions in producing these spectra.


Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.


  1. 1.
    Roberts C.D., Bhagwat M.S., Höll A., Wright S.V.: Aspects of hadron physics. Eur. Phys. J. (Special Topics) 140, 53–116 (2007)ADSCrossRefGoogle Scholar
  2. 2.
    Roberts C.D.: Hadron properties and Dyson-Schwinger equations. Prog. Part. Nucl. Phys. 61, 50–65 (2008)ADSCrossRefGoogle Scholar
  3. 3.
    Holt R.J., Roberts C.D.: Nucleon and pion distribution functions in the valence region. Rev. Mod. Phys. 82, 2991–3044 (2010)ADSCrossRefGoogle Scholar
  4. 4.
    Chang, L., Roberts, C.D., Tandy, P.C.: Selected highlights from the study of mesons. arXiv:1107.4003 [nucl-th]Google Scholar
  5. 5.
    Bali G.S. et al.: Observation of string breaking in QCD. Phys. Rev. D 71, 114513 (2005)ADSCrossRefGoogle Scholar
  6. 6.
    Chang L. et al.: Exploring the light-quark interaction. Chin. Phys. C 33, 1189–1196 (2009)CrossRefGoogle Scholar
  7. 7.
    Roberts C.D., Williams A.G., Krein G.: On the implications of confinement. Int. J. Mod. Phys. A 7, 5607–5624 (1992)ADSCrossRefGoogle Scholar
  8. 8.
    Boucaud, Ph., et al.: The infrared behaviour of the pure Yang-Mills Green functions. arXiv:1109.1936 [hep-ph]Google Scholar
  9. 9.
    Bhagwat M.S., Tandy P.C.: Analysis of full-QCD and quenched-QCD lattice propagators. AIP Conf. Proc. 842, 225–227 (2006)ADSCrossRefGoogle Scholar
  10. 10.
    Bowman P.O. et al.: Unquenched quark propagator in Landau gauge. Phys. Rev. D 71, 054507 (2005)ADSCrossRefGoogle Scholar
  11. 11.
    Qin S.x. et al.: Interaction model for the gap equation. Phys. Rev. C 84, 042202(R) (2011)ADSCrossRefGoogle Scholar
  12. 12.
    Brodsky S.J., de Teramond G.F., Deur A.: Nonperturbative QCD coupling and its β-function from light-front holography. Phys. Rev. D 81, 096010 (2010)ADSCrossRefGoogle Scholar
  13. 13.
    Aguilar A.C., Binosi D., Papavassiliou J.: QCD effective charges from lattice data. JHEP 1007, 002 (2010)ADSCrossRefGoogle Scholar
  14. 14.
    Roberts, C.D.: Opportunities and challenges for theory in the N* program. arXiv:1108.1030 [nucl-th]Google Scholar
  15. 15.
    Gothe, R.W.: Experimental challenges of the N* program. arXiv:1108.4703[nucl-ex]Google Scholar
  16. 16.
    Aznauryan, I.G., Burkert, V.D., Mokeev, V.I.: Nucleon resonance electrocouplings from the CLAS meson electroproduction data. arXiv:1108.1125[nucl-ex]Google Scholar
  17. 17.
    Qin, S.x., et al.: Commentary on rainbow-ladder truncation for excited states and exotics. arXiv:1109.3459[nucl-th]Google Scholar
  18. 18.
    Bender A., Roberts C.D., von Smekal L.: Goldstone theorem and diquark confinement beyond rainbow ladder approximation. Phys. Lett. B 380, 7–12 (1996)ADSCrossRefGoogle Scholar
  19. 19.
    Bowman P.O. et al.: Unquenched gluon propagator in Landau gauge. Phys. Rev. D 70, 034509 (2004)ADSCrossRefGoogle Scholar
  20. 20.
    Aguilar A.C., Binosi D., Papavassiliou J., Rodriguez-Quintero J.: Non-perturbative comparison of QCD effective charges. Phys. Rev. D 80, 085018 (2009)ADSCrossRefGoogle Scholar
  21. 21.
    Skullerud J.I. et al.: Nonperturbative structure of the quark gluon vertex. JHEP 0304, 047 (2003)ADSCrossRefGoogle Scholar
  22. 22.
    Bhagwat M.S., Tandy P.C.: Quark-gluon vertex model and lattice-QCD data. Phys. Rev. D 70, 094039 (2004)ADSCrossRefGoogle Scholar
  23. 23.
    Roberts C.D., McKellar B.H.J.: Critical coupling for dynamical chiral symmetry breaking. Phys. Rev. D 41, 672–678 (1990)ADSCrossRefGoogle Scholar
  24. 24.
    Bloch J.C.R.: Multiplicative renormalizability and quark propagator. Phys. Rev. D 66, 034032 (2002)ADSCrossRefGoogle Scholar
  25. 25.
    Bashir A., Pennington M.R.: Gauge independent chiral symmetry breaking in quenched QED. Phys. Rev. D 50, 7679–7689 (1994)ADSCrossRefGoogle Scholar
  26. 26.
    Roberts H.L.L. et al.: π- and ρ-mesons, and their diquark partners, from a contact interaction. Phys. Rev. C 83, 065206 (2011)ADSCrossRefGoogle Scholar
  27. 27.
    Chang L., Roberts C.D.: Sketching the Bethe-Salpeter kernel. Phys. Rev. Lett. 103, 081601 (2009)MathSciNetADSCrossRefGoogle Scholar
  28. 28.
    Chang, L., Roberts, C.D.: Tracing masses of ground-state light-quark mesons. arXiv:1104.4821 [nucl-th]Google Scholar
  29. 29.
    Flambaum V.V. et al.: σ-terms of light-quark hadrons. Few-Body Syst. 38, 31–51 (2006)ADSCrossRefGoogle Scholar
  30. 30.
    Chang L., Liu Y.X., Roberts C.D.: Dressed-quark anomalous magnetic moments. Phys. Rev. Lett. 106, 072001 (2011)ADSCrossRefGoogle Scholar
  31. 31.
    Nambu Y., Jona-Lasinio G.: Dynamical model of elementary particles based on an analogy with superconductivity. 1. Phys. Rev. 122, 345–358 (1961)ADSCrossRefGoogle Scholar
  32. 32.
    Casher A., Susskind S.: Chiral magnetism (or magnetohadrochironics). Phys. Rev. D 9, 436–460 (1974)ADSCrossRefGoogle Scholar
  33. 33.
    Turner, M.S.: Dark energy and the new cosmology. astro-ph/0108103Google Scholar
  34. 34.
    Brodsky S.J., Shrock R.: Condensates in quantum chromodynamics and the cosmological constant. Proc. Natl. Acad. Sci. 108, 45–50 (2011)ADSCrossRefGoogle Scholar
  35. 35.
    Burkardt M.: Dynamical vertex mass generation and chiral symmetry breaking on the light-front. Phys. Rev. D 58, 096015 (1998)ADSCrossRefGoogle Scholar
  36. 36.
    Brodsky S.J., Shrock R.: Maximum wavelength of confined quarks and gluons and properties of quantum chromodynamics. Phys. Lett. B 666, 95–99 (2008)ADSCrossRefGoogle Scholar
  37. 37.
    Brodsky S.J., Roberts C.D., Shrock R., Tandy P.C.: New perspectives on the quark condensate. Phys. Rev. C 82, 022201(R) (2010)ADSCrossRefGoogle Scholar
  38. 38.
    Glazek, S.D.: Reinterpretation of gluon condensate in dynamics of hadronic constituents. arXiv:1106.6100 [hep-th]Google Scholar
  39. 39.
    Chang, L., Roberts, C.D., Tandy, P.C.: Expanding the concept of in-hadron condensates. arXiv:1109.2903 [nucl-th]Google Scholar
  40. 40.
    Maris P., Roberts C.D., Tandy P.C.: Pion mass and decay constant. Phys. Lett. B 420, 267–273 (1998)ADSCrossRefGoogle Scholar
  41. 41.
    Maris P., Roberts C.D.: π- and K-meson Bethe-Salpeter amplitudes. Phys. Rev. C 56, 3369–3383 (1997)ADSCrossRefGoogle Scholar
  42. 42.
    Langfeld K. et al.: Concerning the quark condensate. Phys. Rev. C 67, 065206 (2003)ADSCrossRefGoogle Scholar
  43. 43.
    Roberts H.L.L., Chang L., Cloët I.C., Roberts C.D.: Masses of ground and excited-state hadrons. Few-Body Syst. 51, 1–12 (2011)ADSCrossRefGoogle Scholar
  44. 44.
    Neubert M.: Heavy quark symmetry. Phys. Rept. 245, 259 (1994)ADSCrossRefGoogle Scholar
  45. 45.
    El-Bennich B., Ivanov M.A., Roberts C.D.: Strong D* → D + π and B* → B + π couplings. Phys. Rev. C 83, 025205 (2011)ADSCrossRefGoogle Scholar
  46. 46.
    Nakamura K. et al.: Review of particle physics. J. Phys. G 37, 075021 (2010)ADSCrossRefGoogle Scholar
  47. 47.
    Davydychev A.I., Osland P., Saks L.: Quark gluon vertex in arbitrary gauge and dimension. Phys. Rev. D 63, 014022 (2001)ADSCrossRefGoogle Scholar
  48. 48.
    Chang L., Cloët I.C., Roberts C.D., Roberts H.L.L.: T(r)opical Dyson-Schwinger equations. AIP Conf. Proc. 1354, 110–117 (2011)ADSCrossRefGoogle Scholar
  49. 49.
    Jegerlehner F., Nyffeler A.: The Muon g − 2. Phys. Rept. 477, 1–110 (2009)ADSCrossRefGoogle Scholar
  50. 50.
    Goecke T., Fischer C.S., Williams R.: Hadronic light-by-light scattering in the muon g − 2: a Dyson-Schwinger equation approach. Phys. Rev. D 83, 094006 (2011)ADSCrossRefGoogle Scholar
  51. 51.
    Bhagwat, M.S., et al.: Schwinger functions and light-quark bound states. Few-Body Syst. 40, 209–235 (2007)Google Scholar
  52. 52.
    Ball J.S., Chiu T.W.: Analytic properties of the vertex function in gauge theories. 1. Phys. Rev. D 22, 2542–2549 (1980)ADSCrossRefGoogle Scholar
  53. 53.
    Watson P., Cassing W., Tandy P.C.: Bethe-Salpeter meson masses beyond ladder approximation. Few-Body Syst. 35, 129–153 (2004)ADSGoogle Scholar
  54. 54.
    Fischer C.S., Williams R.: Probing the gluon self-interaction in light mesons. Phys. Rev. Lett. 103, 122001 (2009)ADSCrossRefGoogle Scholar
  55. 55.
    Cahill R.T., Roberts C.D., Praschifka J.: Baryon structure and QCD. Austral. J. Phys. 42, 129–145 (1989)ADSGoogle Scholar
  56. 56.
    Cahill R.T., Roberts C.D., Praschifka J.: Calculation of diquark masses in QCD. Phys. Rev. D 36, 2804–2812 (1987)ADSCrossRefGoogle Scholar
  57. 57.
    Eichmann G.: Nucleon electromagnetic form factors from the covariant Faddeev equation. Phys. Rev. D 84, 014014 (2011)ADSCrossRefGoogle Scholar
  58. 58.
    Suzuki N. et al.: Disentangling the dynamical origin of P 11 nucleon resonances. Phys. Rev. Lett. 104, 042302 (2010)ADSCrossRefGoogle Scholar
  59. 59.
    Gasparyan A.M., Haidenbauer J., Hanhart C., Speth J.: Pion nucleon scattering in a meson exchange model. Phys. Rev. C 68, 045207 (2003)ADSCrossRefGoogle Scholar
  60. 60.
    Roberts, C.D., Cloët, I.C., Chang, L., Roberts, H.L.L.: Dressed-quarks and the Roper resonance. arXiv:1108.1327 [nucl-th]Google Scholar
  61. 61.
    Cloët I.C. et al.: Survey of nucleon electromagnetic form factors. Few-Body Syst. 46, 1–36 (2009)ADSCrossRefGoogle Scholar
  62. 62.
    Bhagwat M.S. et al.: Flavour symmetry breaking and meson masses. Phys. Rev. C 76, 045203 (2007)ADSCrossRefGoogle Scholar
  63. 63.
    Nguyen T., Bashir A., Roberts C.D., Tandy P.C.: Pion and kaon valence-quark parton distribution functions. Phys. Rev. C 83, 062201(R) (2011)ADSCrossRefGoogle Scholar

Copyright information

© Springer-Verlag (outside the USA) 2011

Authors and Affiliations

  1. 1.Physics DivisionArgonne National LaboratoryArgonneUSA
  2. 2.Department of Physics, Center for High Energy Physics and State Key Laboratory of Nuclear Physics and TechnologyPeking UniversityBeijingChina
  3. 3.Department of PhysicsIllinois Institute of TechnologyChicagoUSA

Personalised recommendations