Skip to main content
Log in

Truncating First-Order Dyson–Schwinger Equations in Coulomb Gauge Yang–Mills Theory

  • Published:
Few-Body Systems Aims and scope Submit manuscript

Abstract

The non-perturbative domain of QCD contains confinement, chiral symmetry breaking, and the bound state spectrum. For the calculation of the latter, the Coulomb gauge is particularly well-suited. Access to these non-perturbative properties should be possible by means of the Green’s functions. However, Coulomb gauge is also very involved, and thus hard to tackle. We introduce a novel BRST-type operator r, and show that the left-hand side of Gauss’ law is r-exact. We investigate a possible truncation scheme of the Dyson–Schwinger equations in first-order formalism for the propagators based on an instantaneous approximation. We demonstrate that this is insufficient to obtain solutions with the expected property of a linear-rising Coulomb potential. We also show systematically that a class of possible vertex dressings does not change this result.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Similar content being viewed by others

References

  1. Gribov V.N.: Quantization of non-abelian gauge theories. Nucl. Phys. B 139, 1 (1978)

    Article  MathSciNet  ADS  Google Scholar 

  2. Zwanziger D.: Renormalization in the Coulomb gauge and order parameter for confinement in QCD. Nucl. Phys. B 518, 237 (1998)

    Article  MATH  ADS  Google Scholar 

  3. Zwanziger D.: No confinement without Coulomb confinement. Phys. Rev. Lett. 90, 102001 (2003) [arXiv:hep-lat/0209105]

    Article  ADS  Google Scholar 

  4. Zwanziger D.: Analytic calculation of color-Coulomb potential and color confinement. Phys. Rev. D 70, 094034 (2004) [arXiv:hep-ph/0312254]

    Article  ADS  Google Scholar 

  5. Cucchieri A., Zwanziger D.: Renormalization group calculation of color Coulomb potential. Phys. Rev. D 65, 014002 (2002) [arXiv:hep-th/0008248]

    Article  ADS  Google Scholar 

  6. Szczepaniak A.P., Swanson E.S.: Coulomb gauge QCD, confinement, and the constituent representation. Phys. Rev. D 65, 025012 (2002) [arXiv:hep-ph/0107078]

    Article  ADS  Google Scholar 

  7. Melde T., Plessas W., Sengl B.: Quark-model identification of baryon ground and resonant states. Phys. Rev. D 77, 114002 (2008) [arXiv:0806.1454 [hep-ph]]

    Article  ADS  Google Scholar 

  8. Glozman L.Y., Plessas W., Varga K., Wagenbrunn R.F.: Unified description of light- and strange-baryon spectra. Phys. Rev. D 58, 094030 (1998) [arXiv:hep-ph/9706507]

    Article  ADS  Google Scholar 

  9. Glozman L.Y., Papp Z., Plessas W.: Light baryons in a constituent quark model with chiral dynamics. Phys. Lett. B 381, 311 (1996) [arXiv:hep-ph/9601353]

    Article  ADS  Google Scholar 

  10. Glozman L.Y., Papp Z., Plessas W., Varga K., Wagenbrunn R.F.: Effective Q Q interactions in constituent quark models. Phys. Rev. C 57, 3406 (1998) [arXiv:nucl-th/9705011]

    Article  ADS  Google Scholar 

  11. Baulieu L., Zwanziger D.: Renormalizable non-covariant gauges and Coulomb gauge limit. Nucl. Phys. B 548, 527 (1999) [arXiv:hep-th/9807024]

    Article  MATH  MathSciNet  ADS  Google Scholar 

  12. Watson, P., Reinhardt, H.: Slavnov-Taylor identities in Coulomb gauge Yang-Mills theory. arXiv:0812.1989 [hep-th]

  13. Watson P., Reinhardt H.: Two-point functions of Coulomb gauge Yang-Mills theory. Phys. Rev. D 77, 025030 (2008) [arXiv:0709.3963 [hep-th]]

    Article  ADS  Google Scholar 

  14. Watson P., Reinhardt H.: Perturbation theory of Coulomb gauge Yang-Mills theory within the first order formalism. Phys. Rev. D 76, 125016 (2007) [arXiv:0709.0140 [hep-th]]

    Article  MathSciNet  ADS  Google Scholar 

  15. Watson P., Reinhardt H.: Propagator Dyson-Schwinger equations of Coulomb gauge Yang-Mills theory within the first order formalism. Phys. Rev. D 75, 045021 (2007) [arXiv:hep-th/0612114]

    Article  MathSciNet  ADS  Google Scholar 

  16. Alkofer R., von Smekal L.: The infrared behavior of QCD Green’s functions: confinement, dynamical symmetry breaking, and hadrons as relativistic bound states. Phys. Rept. 353, 281 (2001) [arXiv:hep-ph/0007355]

    Article  MATH  ADS  Google Scholar 

  17. Fischer C.S.: Infrared properties of QCD from Dyson-Schwinger equations. J. Phys. G 32, R253 (2006) [arXiv:hep-ph/0605173]

    Article  ADS  Google Scholar 

  18. Alkofer R., Fischer C.S., Llanes-Estrada F.J.: Vertex functions and infrared fixed point in Landau gauge SU(N) Yang-Mills theory. Phys. Lett. B 611, 279 (2005) [arXiv:hep-th/0412330]

    Article  MathSciNet  ADS  Google Scholar 

  19. Huber M.Q., Alkofer R., Fischer C.S., Schwenzer K.: The infrared behavior of Landau gauge Yang-Mills theory in d=2, 3 and 4 dimensions. Phys. Lett. B 659, 434 (2008) [arXiv:0705.3809 [hep-ph]]

    Article  MathSciNet  ADS  Google Scholar 

  20. Fischer C.S., Pawlowski J.M.: Uniqueness of infrared asymptotics in Landau gauge Yang-Mills theory. Phys. Rev. D 75, 025012 (2007) [arXiv:hep-th/0609009]

    Article  MathSciNet  ADS  Google Scholar 

  21. Villalba-Chavez, S., Alkofer, R., Schwenzer, K.: On the connection between Hamilton and Lagrange formalism in quantum field theory. arXiv:0807.2146 [hep-th]

  22. Reinhardt H., Schleifenbaum W.: Hamiltonian approach to 1+1 dimensional Yang-Mills theory in Coulomb gauge. Ann. Phys. 324(4), 735–786 (2009) arXiv:0809.1764 [hep-th]

    Article  MATH  MathSciNet  ADS  Google Scholar 

  23. Alkofer R., Amundsen P.A.: Chiral symmetry breaking in an instantaneous approximation to Coulomb gauge QCD. Nucl. Phys. B 306, 305 (1988)

    Article  ADS  Google Scholar 

  24. Feuchter C., Reinhardt H.: Variational solution of the Yang-Mills Schroedinger equation in Coulomb gauge. Phys. Rev. D 70, 105021 (2004) [arXiv:hep-th/0408236]

    Article  MathSciNet  ADS  Google Scholar 

  25. Feuchter, C., Reinhardt, H.: Quark and gluon confinement in Coulomb gauge. arXiv:hep-th/0402106

  26. Epple D., Reinhardt H., Schleifenbaum W., Szczepaniak A.P.: Subcritical solution of the Yang-Mills Schroedinger equation in the Coulomb gauge. Phys. Rev. D 77, 085007 (2008) [arXiv:0712.3694 [hep-th]]

    Article  ADS  Google Scholar 

  27. Feuchter C., Reinhardt H.: The Yang-Mills vacuum in Coulomb gauge in D=2+1 dimensions. Phys. Rev. D 77, 085023 (2008) [arXiv:0711.2452 [hep-th]]

    Article  MathSciNet  ADS  Google Scholar 

  28. Epple D., Reinhardt H., Schleifenbaum W.: Confining solution of the Dyson-Schwinger equations in Coulomb gauge. Phys. Rev. D 75, 045011 (2007) [arXiv:hep-th/0612241]

    Article  ADS  Google Scholar 

  29. Schleifenbaum W., Leder M., Reinhardt H.: Infrared analysis of propagators and vertices of Yang-Mills theory in Landau and Coulomb gauge. Phys. Rev. D 73, 125019 (2006) [arXiv:hep-th/0605115]

    Article  ADS  Google Scholar 

  30. Cucchieri A., Zwanziger D.: Fit to gluon propagator and Gribov formula. Phys. Lett. B 524, 123 (2002) [arXiv:hep-lat/0012024]

    Article  ADS  Google Scholar 

  31. Cucchieri A., Zwanziger D.: Numerical study of gluon propagator and confinement scenario in minimal Coulomb gauge. Phys. Rev. D 65, 014001 (2002) [arXiv:hep-lat/0008026]

    Article  ADS  Google Scholar 

  32. Cucchieri A., Maas A., Mendes T.: Infrared-suppressed gluon propagator in 4d Yang-Mills theory in a Landau-like gauge. Mod. Phys. Lett. A 22, 2429 (2007) [arXiv:hep-lat/0701011]

    Article  ADS  Google Scholar 

  33. Nakagawa Y. et al.: Coulomb-gauge ghost and gluon propagators in SU(3) lattice Yang-Mills theory. Phys. Rev. D 79, 114504 (2009) arXiv:0902.4321 [hep-lat]

    Article  ADS  Google Scholar 

  34. Burgio G., Quandt M., Reinhardt H.: Coulomb gauge gluon propagator and the Gribov formula. Phys. Rev. Lett. 102, 032002 (2009) [arXiv:0807.3291 [hep-lat]]

    Article  MathSciNet  ADS  Google Scholar 

  35. Fischer, C.S., Maas, A., Pawlowski, J.M.: On the infrared behavior of Landau gauge Yang-Mills theory. Ann. Phys. (in press). arXiv:0810.1987 [hep-ph]

  36. von Smekal, L., Mehta, D., Sternbeck, A., Williams, A.G.: Modified Lattice Landau Gauge. PoSLAT 382 (2007). [arXiv:0710.2410]

  37. von Smekal, L.: Landau gauge QCD: functional methods versus lattice simulations. arXiv:0812.0654 [hep-th]

  38. von Smekal L., Jorkowski A., Mehta D., Sternbeck A.: Lattice Landau gauge via stereographic projection. PoS Confin. 8, 48 (2008) arXiv:0812.2992 [hep-th]

    Google Scholar 

  39. Reinhardt, H., Watson, P.: Resolving temporal Gribov copies in Coulomb gauge Yang-Mills theory. arXiv:0808.2436 [hep-th]

  40. Zwanziger D.: Non-perturbative Landau gauge and infrared critical exponents in QCD. Phys. Rev. D 65, 094039 (2002) [arXiv:hep-th/0109224]

    Article  ADS  Google Scholar 

  41. Watson P., Alkofer R.: Verifying the Kugo-Ojima confinement criterion in Landau gauge QCD. Phys. Rev. Lett. 86, 5239 (2001) [arXiv:hep-ph/0102332]

    Article  ADS  Google Scholar 

  42. Alkofer R., Huber M.Q., Schwenzer K.: Algorithmic derivation of Dyson-Schwinger equations. Comp. Phys. Comm. 180, 965 (2009) [arXiv:0808.2939 [hep-th]]

    Article  ADS  Google Scholar 

  43. Greensite J., Olejnik S.: Coulomb energy, vortices, and confinement. Phys. Rev. D 67, 094503 (2003) [arXiv:hep-lat/0302018]

    Article  ADS  Google Scholar 

  44. Atkinson D., Bloch J.C.R.: QCD in the infrared with exact angular integrations. Mod. Phys. Lett. A 13, 1055 (1998) [arXiv:hep-ph/9802239]

    Article  ADS  Google Scholar 

  45. Atkinson D., Bloch J.C.R.: Running coupling in non-perturbative QCD. I: bare vertices and y-max approximation. Phys. Rev. D 58, 094036 (1998) [arXiv:hep-ph/9712459]

    Article  ADS  Google Scholar 

  46. Bloch J.C.R.: Two-loop improved truncation of the ghost-gluon Dyson-Schwinger equations: Multiplicatively renormalizable propagators and nonperturbative running coupling. Few Body Syst. 33, 111 (2003) [arXiv:hep-ph/0303125]

    Article  ADS  Google Scholar 

  47. Fischer C.S., Zwanziger D.: Infrared behaviour and running couplings in interpolating gauges in QCD. Phys. Rev. D 72, 054005 (2005) [arXiv:hep-ph/0504244]

    Article  ADS  Google Scholar 

  48. Lichtenegger, K., Zwanziger, D.: to be published

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Axel Maas.

Rights and permissions

Reprints and permissions

About this article

Cite this article

Alkofer, R., Maas, A. & Zwanziger, D. Truncating First-Order Dyson–Schwinger Equations in Coulomb Gauge Yang–Mills Theory. Few-Body Syst 47, 73–90 (2010). https://doi.org/10.1007/s00601-009-0073-0

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s00601-009-0073-0

Keywords

Navigation