Skip to main content
Log in

On Dirichlet-to-Neumann Maps, Nonlocal Interactions, and Some Applications to Fredholm Determinants

  • Published:
Few-Body Systems Aims and scope Submit manuscript

Abstract

We consider Dirichlet-to-Neumann maps associated with (not necessarily self-adjoint) Schrödinger operators describing nonlocal interactions in \({L^2(\Omega; d^n x)}\) , where \({\Omega \subset \mathbb{R}^n}\) , \({n\in\mathbb{N}}\) , \({n\geq 2}\) , are open sets with a compact, nonempty boundary \({\partial\Omega}\) satisfying certain regularity conditions. As an application we describe a reduction of a certain ratio of Fredholm perturbation determinants associated with operators in \({L^2(\Omega; d^{n} x)}\) to Fredholm perturbation determinants associated with operators in \({L^2(\partial\Omega; d^{n-1} \sigma)}\) , \({n\in\mathbb{N}}\) , \({n\geq 2}\) . This leads to an extension of a variant of a celebrated formula due to Jost and Pais, which reduces the Fredholm perturbation determinant associated with a Schrödinger operator on the half-line \({(0,\infty)}\) , in the case of local interactions, to a simple Wronski determinant of appropriate distributional solutions of the underlying Schrödinger equation.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Similar content being viewed by others

References

  1. Abramowitz M., Stegun I.A.: Handbook of Mathematical Functions. Dover, New York (1972)

    MATH  Google Scholar 

  2. Alsholm P.: Inverse scattering theory for perturbations of rank one. Duke Math. J. 47, 391–398 (1980)

    Article  MATH  MathSciNet  Google Scholar 

  3. Bertero M., Talenti G., Viano G.A.: Scattering and bound state solutions for a class of nonlocal potentials (S-wave). Commun. Math. Phys. 6, 128–150 (1967)

    Article  MathSciNet  ADS  Google Scholar 

  4. Bertero M., Talenti G., Viano G.A.: Eigenfunction expansions associated with Schrödinger two-particle operators. Nuovo Cim. 62, 27–87 (1969)

    Article  ADS  Google Scholar 

  5. Bollé D., Gesztesy F., Nessmann C., Streit L.: Scattering theory for general, non-local interactions: threshold behavior and sum rules. Rep. Math. Phys. 23, 373–408 (1986)

    Article  MATH  MathSciNet  ADS  Google Scholar 

  6. Buslaev V.S., Faddeev L.D.: Formulas for traces for a singular Sturm–Liouville differential operators. Sov. Math. Dokl. 1, 451–454 (1960)

    MATH  MathSciNet  Google Scholar 

  7. Chadan K., Sabatier P.C.: Inverse Problems in Quantum Scattering Theory. 2nd edn. Springer, New York (1989)

    Google Scholar 

  8. Dreyfus T.: Levinson’s theorem for nonlocal interactions. J. Phys. A 9, L187–L191 (1976)

    Article  ADS  Google Scholar 

  9. Dreyfus T.: The determinant of the scattering matrix and its relation to the number of eigenvalues. J. Math. Anal. Appl. 64, 114–134 (1978)

    Article  MATH  MathSciNet  Google Scholar 

  10. Gesztesy F., Latushkin Y., Mitrea M., Zinchenko M.: Nonselfadjoint operators, infinite determinants, and some applications. Russ. J. Math. Phys. 12, 443–471 (2005)

    MATH  MathSciNet  Google Scholar 

  11. Gesztesy F., Makarov K.A.: (Modified) Fredholm determinants for operators with matrix-valued semi-separable integral kernels revisited. Integr. Equ. Oper. Theory 47, 457–497 (2003) (See also Erratum 48, 425–426 (2004) and the corrected electronic only version in 48, 561–602 (2004))

    Article  MathSciNet  Google Scholar 

  12. Gesztesy, F., Mitrea, M.: Generalized Robin boundary conditions, Robin-to-Dirichlet maps, and Krein-type resolvent formulas for Schrödinger operators on bounded Lipschitz domains. In: Mitrea, D., Mitrea, M. (eds.) Perspectives in Partial Differential Equations, Harmonic Analysis and Applications: A Volume in Honor of Vladimir G. Maz’ya’s 70th Birthday. Proceedings of Symposia in Pure Mathematics, vol. 79, pp. 105–173. Am. Math. Soc., Providence, RI (2008)

  13. Gesztesy, F., Mitrea, M.: Robin-to-Robin maps and Krein-type resolvent formulas for Schrödinger operators on bounded Lipschitz domains. In: Adamyan, V., Berezansky, Y.M., Gohberg, I., Gorbachuk, M.L., Gorbachuk, V., Kochubei, A.N., Langer, H., Popov, G. (eds.) Modern Analysis and Applications. The Mark Krein Centenary Conference, vol. 2, Operator Theory: Advances and Applications, vol. 191, pp. 81–113, Birkhäuser, Basel (2009)

  14. Gesztesy F., Mitrea M., Zinchenko M.: Variations on a Theme of Jost and Pais. J. Funct. Anal. 253, 399–448 (2007)

    Article  MATH  MathSciNet  Google Scholar 

  15. Ghirardi G.C., Rimini A.: Properties of a class of nonlocal interactions. J. Math. Phys. 5, 722–728 (1964)

    Article  MathSciNet  ADS  Google Scholar 

  16. Ghirardi G.C., Rimini A.: On the number of bound states of a given interaction. J. Math. Phys. 6, 40–44 (1965)

    Article  MATH  MathSciNet  ADS  Google Scholar 

  17. Jost R., Pais A.: On the scattering of a particle by a static potential. Phys. Rev. 82, 840–851 (1951)

    Article  MATH  MathSciNet  ADS  Google Scholar 

  18. McLean W.: Strongly Elliptic Systems and Boundary Integral Equations. Cambridge University Press, Cambridge (2000)

    MATH  Google Scholar 

  19. Mitrea, I., Mitrea, M.: Multiple Layer Potentials for Higher Order Elliptic Boundary Value Problems, preprint (2007)

  20. Nakamura S.: A remark on the Dirichlet–Neumann decoupling and the integrated density of states. J. Funct. Anal. 179, 136–152 (2001)

    Article  MATH  MathSciNet  Google Scholar 

  21. Newton R.G.: Relation between the three-dimensional Fredholm determinant and the Jost function. J. Math. Phys. 13, 880–883 (1972)

    Article  ADS  Google Scholar 

  22. Newton R.G.: Nonlocal interactions: the generalized Levinson theorem and the structure of the spectrum. J. Math. Phys. 18, 1582–1588 (1977)

    Article  ADS  Google Scholar 

  23. Newton R.G.: Inverse scattering. I. One dimension. J. Math. Phys. 21, 493–505 (1980)

    Article  MATH  MathSciNet  ADS  Google Scholar 

  24. Newton R.G.: Scattering Theory of Waves and Particles, 2nd edn. Dover, New York (2002)

    Google Scholar 

  25. Scadron M., Weinberg S., Wright J.: Functional analysis and scattering theory. Phys. Rev. 135, B202–B207 (1964)

    Article  MathSciNet  ADS  Google Scholar 

  26. Simon B.: Resonances in one dimension and Fredholm determinants. J. Funct. Anal. 178, 396–420 (2000)

    Article  MATH  MathSciNet  Google Scholar 

  27. Simon, B.: Trace Ideals and Their Applications, Mathematical Surveys and Monographs, vol. 120, 2nd edn. Am. Math. Soc., Providence, RI (2005)

  28. Singh Y., Warke C.S.: Generalizations of the Jost–Pais theorem for nonlocal potentials. Can. J. Phys. 49, 1029–1034 (1971)

    MATH  MathSciNet  ADS  Google Scholar 

  29. Warke C.S., Bhaduri R.K.: The Jost function of a nonlocal potential. Nucl. Phys. A 162, 289–294 (1971)

    Article  MathSciNet  ADS  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Fritz Gesztesy.

Additional information

Dedicated with great pleasure to Willi Plessas on the occasion of his 60th birthday.

Based upon work partially supported by the US National Science Foundation under Grant Nos. DMS-0400639 andFRG-0456306.

Rights and permissions

Reprints and permissions

About this article

Cite this article

Gesztesy, F., Mitrea, M. & Zinchenko, M. On Dirichlet-to-Neumann Maps, Nonlocal Interactions, and Some Applications to Fredholm Determinants. Few-Body Syst 47, 49–64 (2010). https://doi.org/10.1007/s00601-009-0065-0

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s00601-009-0065-0

Keywords

Navigation