Skip to main content
Log in

Biexciton in magnetic fields

  • Published:
Few-Body Systems Aims and scope Submit manuscript

Abstract

The binding energy and structure of biexcitons in strong magnetic field is investigated using the stochastic variational method. The magnetic field confines the electrons and positrons in a small volume leading to Wigner-crystal like states of particles.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Similar content being viewed by others

References

  1. Anisimovas E., Peeters F.M.: Biexciton spin and angular momentum transitions in vertically coupled quantum dots. Phys. Rev. B 71(11), 115319 (2005)

    Article  ADS  Google Scholar 

  2. Ashoori R.C., Stormer H.L., Weiner J.S., Pfeiffer L.N., Baldwin K.W., West K.W.: N-electron ground state energies of a quantum dot in magnetic field. Phys. Rev. Lett. 71(4), 613–616 (1993)

    Article  ADS  Google Scholar 

  3. Baars T., Bayer M., Gorbunov A.A., Forchel A.: Biexcitons in inxga1−xas/gaas quantum wells subject to high magnetic fields. Phys. Rev. B 63(15), 153312 (2001)

    Article  ADS  Google Scholar 

  4. Bolton F.: Fixed-phase quantum Monte Carlo method applied to interacting electrons in a quantum dot. Phys. Rev. B 54(7), 4780–4793 (1996)

    Article  ADS  Google Scholar 

  5. Cassidy D.B., Deng S.H.M. Jr, Mills A.P.: Evidence for positronium molecule formation at a metal surface. Phys. Rev. A (At. Mol. Opt. Phys.) 76(6), 062511 (2007)

    ADS  Google Scholar 

  6. Egger R., Häusler W., Mak C.H., Grabert H.: Crossover from fermi liquid to wigner molecule behavior in quantum dots. Phys. Rev. Lett. 82(16), 3320–3323 (1999)

    Article  ADS  Google Scholar 

  7. Filinov A.V., Riva C., Peeters F.M., Lozovik Yu.E., Bonitz M.: Influence of well-width fluctuations on the binding energy of excitons, charged excitons, and biexcitons in gaas-based quantum wells. Phys. Rev. B 70(3), 035323 (2004)

    Article  ADS  Google Scholar 

  8. Fujito M., Natori A., Yasunaga H.: Many-electron ground states in anisotropic parabolic quantum dots. Phys. Rev. B 53(15), 9952–9958 (1996)

    Article  ADS  Google Scholar 

  9. Harju A., Sverdlov V.A., Nieminen R.M., Halonen V.: Many-body wave function for a quantum dot in a weak magnetic field. Phys. Rev. B 59(8), 5622–5626 (1999)

    Article  ADS  Google Scholar 

  10. Hawrylak P., Pfannkuche D.: Magnetoluminescence from correlated electrons in quantum dots. Phys. Rev. Lett. 70(4), 485–488 (1993)

    Article  ADS  Google Scholar 

  11. Hawrylak P.: Single-electron capacitance spectroscopy of few-electron artificial atoms in a magnetic field: theory and experiment. Phys. Rev. Lett. 71(20), 3347–3350 (1993)

    Article  ADS  Google Scholar 

  12. Hirose K., Wingreen N.S.: Spin-density-functional theory of circular and elliptical quantum dots. Phys. Rev. B 59(7), 4604–4607 (1999)

    Article  ADS  Google Scholar 

  13. Ikezawa M., Nair S.V., Ren H.-W., Masumoto Y., Ruda H.: Biexciton binding energy in parabolic gaas quantum dots. Phys. Rev. B (Condens. Matter Mater. Phys.) 73(12), 125321 (2006)

    ADS  Google Scholar 

  14. Jarillo-Herrero P., Kong J., van der Zant H.S.J., Dekker C., Kouwenhoven L.P., De Franceschi S.: Electronic transport spectroscopy of carbon nanotubes in a magnetic field. Phys. Rev. Lett. 94(15), 156802 (2005)

    Article  ADS  Google Scholar 

  15. Koskinen M., Manninen M., Reimann S.M.: Hund’s rules and spin density waves in quantum dots. Phys. Rev. Lett. 79(7), 1389–1392 (1997)

    Article  ADS  Google Scholar 

  16. Léger Y., Besombes L., Fernández-Rossier J., Maingault L., Mariette H.: Electrical control of a single mn atom in a quantum dot. Phys. Rev. Lett. 97(10), 107401 (2006)

    Article  ADS  Google Scholar 

  17. Maksym P.A., Chakraborty T.: Quantum dots in a magnetic field: role of electron–electron interactions. Phys. Rev. Lett. 65(1), 108–111 (1990)

    Article  ADS  Google Scholar 

  18. Müller H.-M., Koonin S.E.: Phase transitions in quantum dots. Phys. Rev. B 54(20), 14532–14539 (1996)

    Article  ADS  Google Scholar 

  19. Pederiva F., Umrigar C.J., Lipparini E.: Diffusion monte carlo study of circular quantum dots. Phys. Rev. B 62(12), 8120–8125 (2000)

    Article  ADS  Google Scholar 

  20. Qu F., Hawrylak P.: Magnetic exchange interactions in quantum dots containing electrons and magnetic ions. Phys. Rev. Lett. 95(21), 217206 (2005)

    Article  ADS  Google Scholar 

  21. Riva C., Peeters F.M., Varga K.: Positively charged magnetoexcitons in a semiconductor quantum well. Phys. Rev. B 64(23), 235301 (2001)

    Article  ADS  Google Scholar 

  22. Stepanenko D., Bonesteel N.E.: Universal quantum computation through control of spin–orbit coupling. Phys. Rev. Lett. 93(14), 140501 (2004)

    Article  ADS  Google Scholar 

  23. Tarucha S., Austing D.G., Honda T., van der Hage R.J., Kouwenhoven L.P.: Shell filling and spin effects in a few electron quantum dot. Phys. Rev. Lett. 77(17), 3613–3616 (1996)

    Article  ADS  Google Scholar 

  24. Tavernier M.B., Anisimovas E., Peeters F.M., Szafran B., Adamowski J., Bednarek S.: Four-electron quantum dot in a magnetic field. Phys. Rev. B 68(20), 205305 (2003)

    Article  ADS  Google Scholar 

  25. Tavernier M.B., Anisimovas E., Peeters F.M.: Ground state and vortex structure of the n = 5 and n = 6 electron quantum dot. Phys. Rev. B (Condens. Matter Mater. Phys.) 74(12), 125305 (2006)

    ADS  Google Scholar 

  26. Varga K., Suzuki Y.: Precise solution of few-body problems with the stochastic variational method on a correlated Gaussian basis. Phys. Rev. C 52(6), 2885–2905 (1995)

    Article  ADS  Google Scholar 

  27. Varga K., Suzuki Y.: Solution of few-body problems with the stochastic variational method i. central forces with zero orbital momentum. Comput. Phys. Commun. 106(1–2), 157–168 (1997)

    Article  MATH  ADS  Google Scholar 

  28. Varga K., Navratil P., Usukura J., Suzuki Y.: Stochastic variational approach to few-electron artificial atoms. Phys. Rev. B 63(20), 205308 (2001)

    Article  ADS  Google Scholar 

  29. Wojs A., Hawrylak P.: Charging and infrared spectroscopy of self-assembled quantum dots in a magnetic field. Phys. Rev. B 53(16), 10841–10845 (1996)

    Article  ADS  Google Scholar 

  30. Wojs A., Hawrylak P.: Theory of photoluminescence from modulation-doped self-assembled quantum dots in a magnetic field. Phys. Rev. B 55(19), 13066–13071 (1997)

    Article  ADS  Google Scholar 

  31. Yannouleas C., Landman U.: Spontaneous symmetry breaking in single and molecular quantum dots. Phys. Rev. Lett. 82(26), 5325–5328 (1999)

    Article  ADS  Google Scholar 

  32. Zhang H., Shen M., Liu J.-J.: Biexciton binding energy in parabolic quantum-well wires. J. Appl. Phys. 103(4), 043705 (2008)

    Article  ADS  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Kálmán Varga.

Rights and permissions

Reprints and permissions

About this article

Cite this article

Varga, K. Biexciton in magnetic fields. Few-Body Syst 47, 65–71 (2010). https://doi.org/10.1007/s00601-009-0062-3

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s00601-009-0062-3

Keywords

Navigation