Skip to main content
Log in

A Partial Width Calculation of OZI-Allowed Charmonium Decays in a Coupled Channel Framework

  • Published:
Few-Body Systems Aims and scope Submit manuscript

Abstract

Okubo–Zweig–Iizuka-allowed partial decay widths, masses, and total decay width of charmonium states are studied in a nonrelativistic coupled-channel framework based on microscopic effective quark interactions. With the help of the complex scale transformation, the coupled channel equation is easily solved under the proper boundary condition for resonances. The obtained result as a whole is very successful and encouraging for the traditional charmonium states including ψ(4040) whose features of mass and partial decay widths have been argued historically. The coupling mechanisms of these states are investigated by reducing artificially the channel coupling strengths little by little and finally turning the coupling off. The situations turn out to be quite different from what we would have naively supposed. Other solutions than the traditional charmonium states were obatined at the same time. Some of them are discussed in relation with new particles observed recently.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Similar content being viewed by others

References

  1. Okubo S.: φ-meson and unitary symmetry model. Phys. Lett. 5, 165 (1963)

    Article  MATH  ADS  MathSciNet  Google Scholar 

  2. Zweig, G.: An SU3 model for strong interaction symmetry and its breaking; Part II. CERN Report No. 8419/Th, 412 (1964) (unpublished)

  3. Iizuka J., Okada K., Shito O.: Systematics and phenomenology of boson mass levels. III. Prog. Theor. Phys. 35, 1061 (1966)

    Article  ADS  Google Scholar 

  4. Swanson E.S.: The new heavy mesons: a status report. Phys. Rep. 429, 243 (2006)

    Article  ADS  Google Scholar 

  5. Le Yaouanc A., Oliver L., Pène O., Raynal J.-C.: Strong decays of ψ′′(4.028) as a radial excitation of charmonium. Phys. Lett. B 71, 397 (1977)

    Article  ADS  Google Scholar 

  6. Le Yaouanc A., Oliver L., Pène O., Raynal J.-C.: Why is ψ(4.414) so narrow?. Phys. Lett. B 72, 57 (1977)

    Article  ADS  Google Scholar 

  7. Barnes T., Godfrey S., Swanson E.S.: Higher charmonia. Phys. Rev. D 72, 054026 (2005)

    Article  ADS  Google Scholar 

  8. Eichten E., Gottfried K., Kinoshita T., Lane K.D., Yan T.M.: Interplay of confinement and decay in the spectrum of charmonium. Phys. Rev. Lett. 36, 500 (1976)

    Article  ADS  Google Scholar 

  9. Eichten E., Gottfried K., Kinoshita T., Lane K.D., Yan T.M.: Charmonium: the model. Phys. Rev. D 17, 3090 (1978)

    Article  ADS  Google Scholar 

  10. Eichten E., Gottfried K., Kinoshita T., Lane K.D., Yan T.M.: Charmonium: comparison with experiment. Phys. Rev. D 21, 203 (1980)

    Article  ADS  Google Scholar 

  11. Eichten E., Lane K., Quigg C.: New states above charm threshold. Phys. Rev. D 73, 014014 (2006)

    Article  ADS  Google Scholar 

  12. Yabusaki N., Katō K., Hirano M., Sakai M., Matsuda Y.: Mass shifts and decay widths of ψ mesons due to OZI-allowed decay channels. Few-Body Syst. 28, 1 (2000)

    Article  ADS  Google Scholar 

  13. Aguilar J., Combes J.M.: A class of analytic perturbations for one-body Schrödinger hamiltonians. Commun. Math. Phys. 22, 269 (1971)

    Article  MATH  ADS  MathSciNet  Google Scholar 

  14. Balslev E., Combes J.M.: Spectral properties of many-body Schrödinger operators with dilatation-analytic interactions. Commun. Math. Phys. 22, 280 (1971)

    Article  MATH  ADS  MathSciNet  Google Scholar 

  15. Simon B.: Quadratic form techniques and the Balslev–Combes theorem. Commun. Math. Phys. 27, 1 (1972)

    Article  MATH  ADS  Google Scholar 

  16. Ho Y.K.: The method of complex coordinate rotation and its applications to atomic collision processes. Phys. Rep. 99, 1 (1983)

    Article  ADS  Google Scholar 

  17. Yabusaki N., Hirano M., Katō K., Sakai M., Matsuda Y.: Masses and OZI-allowed decay widths of \({\Upsilon}\) states in a coupled channel model. Prog. Theor. Phys. 106, 389 (2001)

    Article  ADS  Google Scholar 

  18. Bicudo Pedro J. de A., Ribiero Jose E.F.: Current-quark model in a 3 P 0 condensed vacuum. Phys. Rev. D 42, 1611 (1990)

    Article  ADS  Google Scholar 

  19. Amer A., Le Yaouanc A., Oliver L., Pène O., Raynal J.-C.: Instability of the chiral-invariant vacuum for a confining potential. Phys. Rev. Lett. 50, 87 (1983)

    Article  ADS  Google Scholar 

  20. Le Yaouanc A., Ono S., Oliver L., Pène O., Raynal J.-C.: Spontaneous breaking of chiral symmetry for confining potentials. Phys. Rev. D 29, 1233 (1984)

    Article  ADS  Google Scholar 

  21. Le Yaouanc A., Oliver L., Pène O., Raynal J.-C.: Quark model of light mesons with dynamically broken chiral symmetry. Phys. Rev. D 31, 137 (1985)

    Article  ADS  Google Scholar 

  22. Moiseyev N., Peskin U.: Partial widths obtained by the complex resonance-scattering theory. Phys. Rev. A 42, 255 (1990)

    Article  ADS  Google Scholar 

  23. Johnson B.R.: New numerical methods applied to solving the one-dimensional eigenvalue problem. J. Chem. Phys. 67, 4086 (1977)

    Article  ADS  Google Scholar 

  24. Johnson B.R.: The renormalized Numerov method applied to calculating bound states of the coupled-channel Schroedinger equation. J. Chem. Phys. 69, 4678 (1978)

    Article  ADS  Google Scholar 

  25. Noro T., Taylor H.S.: Resonance partial widths and partial photodetachment rate using the rotated-coordinate method. J. Phys. B 13, L377 (1980)

    ADS  Google Scholar 

  26. Masui H., Aoyama S., Myo T., Katō K.: Partial decay widths in coupled-channel systems with the complex-scaled Jost function method. Prog. Theor. Phys. 102, 1119 (1999)

    Article  ADS  Google Scholar 

  27. Particle Data Group: Review of particle physics. J. of Phys. G33, 765 (2006)

  28. Alcock J.W., Burfitt M.J., Cottingham W.N.: A string-breaking model of heavy meson decays. Z. Phys. C25, 161 (1984)

    ADS  Google Scholar 

  29. Bradley A., Robson D.: Charmonium above charm threshold—the simple approach. Phys. Lett. B 93, 69 (1980)

    Article  ADS  Google Scholar 

  30. Voloshin M.B., Okun L.B.: Hydronic molecules and the charmonium atom. JETP Lett. 23, 333 (1976)

    ADS  Google Scholar 

  31. De Rújula A., Georgi H., Glashow S.L.: Is charm found?. Phys. Rev. Lett. 37, 398 (1976)

    Article  ADS  Google Scholar 

  32. De Rújula A., Georgi H., Glashow S.L.: Molecular charmonium: a new spectroscopy? Phys. Rev. Lett. 38, 317 (1977)

    Article  ADS  Google Scholar 

  33. Abe, K., et al. (Belle Collaboration): Observation of a charmoniumlike state produced in association with a J/ψ in e + e annihilation at \({{\sqrt{S} \approx 10.6}}\) GeV. Phys. Rev. Lett. 98, 082001 (2007) [arXiv: hep-ex/0507019]

    Google Scholar 

  34. Llanes-Estrada E.J.: Y (4260) and possible charmonium assignment. Phys. Rev. D 72, 031503 (R) (2005)

    Article  ADS  Google Scholar 

  35. Aubert B. et al.: (BABAR Collaboration): observation of a broad structure in the π + π J/ψ mass spectrum around 4.26 GeV/c 2. Phys. Rev. Lett. 95, 142001 (2005)

    Article  ADS  Google Scholar 

  36. Coan T.E. et al.: (CLEO Collaboration): charmonium decays of Y(4260), ψ(4160), and ψ(4040). Phys. Rev. Lett. 96, 162003 (2006)

    Article  ADS  Google Scholar 

  37. Abe, K., et al. (Belle Collaboration): Study of the Y (4260) resonance in e + e collisions with initial state radiation at Belle. BELLE-CONF-0610, hep-ex/0612006 (2006)

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to K. Katō.

Rights and permissions

Reprints and permissions

About this article

Cite this article

Sakai, M., Matsuda, Y., Hirano, M. et al. A Partial Width Calculation of OZI-Allowed Charmonium Decays in a Coupled Channel Framework. Few-Body Syst 46, 189–198 (2009). https://doi.org/10.1007/s00601-009-0060-5

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s00601-009-0060-5

Navigation