Skip to main content
Log in

Propagator of the Lattice Domain Wall Fermion and the Staggered Fermion

  • Published:
Few-Body Systems Aims and scope Submit manuscript

An Erratum to this article was published on 24 April 2009

An Erratum to this article was published on 24 April 2009

Abstract

We calculate the propagator of the domain wall fermion (DWF) of the RBC/UKQCD collaboration with 2 + 1 dynamical flavors of 163 × 32 × 16 lattice in Coulomb gauge, by applying the conjugate gradient method. We find that the fluctuation of the propagator is small when the momenta are taken along the diagonal of the 4-dimensional lattice. Restricting momenta in this momentum region, which is called the cylinder cut, we compare the mass function and the running coupling of the quark-gluon coupling α s,g1(q) with those of the staggered fermion of the MILC collaboration in Landau gauge. In the case of DWF, the ambiguity of the phase of the wave function is adjusted such that the overlap of the solution of the conjugate gradient method and the plane wave at the source becomes real. The quark-gluon coupling α s,g1(q) of the DWF in the region q > 1.3 GeV agrees with ghost-gluon coupling α s (q) that we measured by using the configuration of the MILC collaboration, i.e., enhancement by a factor (1 + c/q 2) with c ≃ 2.8 GeV2 on the pQCD result. In the case of staggered fermion, in contrast to the ghost-gluon coupling α s (q) in Landau gauge which showed infrared suppression, the quark-gluon coupling α s,g1(q) in the infrared region increases monotonically as q→ 0. Above 2 GeV, the quark-gluon coupling α s,g1(q) of staggered fermion calculated by naive crossing becomes smaller than that of DWF, probably due to the complex phase of the propagator which is not connected with the low energy physics of the fermion taste.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Similar content being viewed by others

References

  1. Bowman P.O., Heller U.M., Leinweber D.B., Williams A.G., Zhang J.B.: Quark propagator from LQCD and its physical implications. Lect. Notes. Phys. 663, 17 (2005)

    Article  ADS  Google Scholar 

  2. Furui S., Nakajima H.: Unquenched Kogut–Susskind quark propagator in lattice Landau gauge QCD. Phys. Rev. D 73, 074503 (2006)

    Article  ADS  Google Scholar 

  3. Bernard C. et al.: Quenched hadron spectroscopy with improved staggered quark action. Phys. Rev. D 58, 014503 (1998)

    Article  ADS  Google Scholar 

  4. Aubin C. et al.: Light hadrons with improved staggered quarks: approaching the continuum limit. Phys. Rev. D 70, 094505 (2004)

    Article  ADS  Google Scholar 

  5. The Gauge Connection. http://qcd.nersc.gov

  6. Lattice Archives hosted at BNL. http://lattices.qcdoc.bnl.gov

  7. Allton C. et al.: 2+1 flavor domain wall QCD on a (2fm)3 lattice: light meson spectroscopy with L z  = 16. Phys. Rev. D 76, 014504 (2007) arXiv:hep-lat/0701013

    Article  ADS  Google Scholar 

  8. Zwanziger D.: Fundamental modular region, Boltzmann factor and the area law in lattice theory. Nucl. Phys. B 412, 657 (1994)

    Article  MATH  ADS  MathSciNet  Google Scholar 

  9. ’t Hooft G.: How instantons solve the U(1) problem. Phys. Rept. 142, 357 (1986)

    Article  ADS  MathSciNet  Google Scholar 

  10. Boucaud Ph. et al.: Preliminary calculation of α, from Green functions with dynamical quarks. JHEP 0201, 046 (2002)

    Article  ADS  Google Scholar 

  11. Boucaud Ph. et al.: The strong coupling constant at small momentum as an instanton detector. JHEP 0304, 005 (2003)

    Article  ADS  Google Scholar 

  12. Skullerud J.I.: The running coupling from the quark gluon vertex. Nucl. Phys. Proc. Suppl. 63, 242 (1998)

    Article  ADS  Google Scholar 

  13. Furui, S., Nakajma, H.: Roles of the quark field in the infrared lattice Coulomb guage and Landau gauge QCD. PoS (Lattice 2007) 301 (2007); arXiv:0708.1421[hep-lat]

  14. Kaplan D.B.: A method for simulating chiral fermions on the lattice. Phys. Lett B 288, 342 (1992)

    Article  ADS  MathSciNet  Google Scholar 

  15. Kaplan D.B.: Chiral fermions on the lattice. Nucl. Phys. B 30(Proc. Suppl.), 597 (1993)

    Google Scholar 

  16. Narayanan R., Neuberger H.: Infinitely many regulator fields for chiral fermions. Phys. Lett. B 302, 62 (1993)

    Article  ADS  Google Scholar 

  17. Shamir Y.: The euclidean spectrum of Kaplan’s lattice chiral fermions. Phys. Lett. B 305, 357 (1993)

    Article  ADS  Google Scholar 

  18. Shamir Y.: Chiral fermions from lattice boundaries. Nucl. Phys. B 406, 90 (1993) arXiv:hep-lat/9303005

    Article  ADS  MathSciNet  Google Scholar 

  19. Chen P. et al.: Finite temperature QCD phase transition with domain wall fermions. Phys. Rev. D 64, 014503 (2001)

    Article  ADS  Google Scholar 

  20. Blum T. et al.: Nonperturbative renormalization of domain wall fermions: Quark bilinears. Phys. Rev. D 66, 014504 (2002)

    Article  ADS  Google Scholar 

  21. Furman V., Shamir Y.: Axial symmetries in latticc QCD with Kaplan fermions. Nucl. Phys B 439, 54 (1995) arXiv:hep-lat/9405004

    Article  ADS  Google Scholar 

  22. Vranas P.M.: Chiral symmetry restoration in the Schwinger model with domain wall fermion. Phys. Rev. D 57, 1415 (1998)

    Article  ADS  Google Scholar 

  23. Antonio, D.J., et al.: First results from 2+1-Flavor Domain Wall QCD: Mass Spectrum, Topology Change and Chiral Symmetry with L, = 8. Phys. Rev. D 75, 114501 (2007); arXiv:hep-lat/0612005

  24. deGrand T., Loft R.: Wave function tests for lattice QCD spectroscopy. Comp. Phys. Comm. 65, 84 (1991)

    Article  MATH  ADS  MathSciNet  Google Scholar 

  25. Blum T. et al.: Quenched lattice QCD with domain wall fermions and the chiral limit. Phys. Rev. D 69, 074502 (2004)

    Article  ADS  Google Scholar 

  26. Furui S., Nakajima H.: Infrared features of the Landau gauge QCD. Phys. Rev. D 69, 074505 (2004)

    Article  ADS  Google Scholar 

  27. Bonnet F.D.R., Bowman P.O., Leinweber D.B., Williams A.G., Zanotti J.M.: Infinite volume and continuum limits of the Landau gauge gluon propagator. Phys. Rev. D 64, 034501 (2001)

    Article  ADS  Google Scholar 

  28. Furui S., Nakajima H.: Unquenched Kogut–Susskind quark propagator in lattice Landau gauge QCD. Phys. Rev. D 73, 094506 (2006)

    Article  ADS  Google Scholar 

  29. Furui S., Nakajima H.: Correlation of the ghost and the quark in the lattice Landau gauge QCD. Br. J. Phys. 37, 186 (2007)

    Google Scholar 

  30. Bonnet F.D. et al.: Overlap quark propagator in Landau gauge. Phys. Rev. D 65, 114503 (2002)

    Article  ADS  Google Scholar 

  31. Roberts C.D., Williams A.G.: Dyson–Schwinger equations and their application to hadronic physics. Prog. Part. Nucl. Phys. 33, 477 (1994)

    Article  ADS  Google Scholar 

  32. Alkofer R., von Smekal L.: The infrared behavior of QCD Green’s functions. Phys. Rept. 353, 281 (2001)

    Article  MATH  ADS  Google Scholar 

  33. Alkofer R., Detmold W., Fischer C.S., Maris P.: Analytic properties of the Landau gauge gluon and quark propagators. Phys. Rev. D 70, 014014 (2004)

    Article  ADS  Google Scholar 

  34. Bhagwat M.S. et al.: Analysis of a quenched lattice QCD dressed quark propagator. Phys. Rev. C 68, 015203 (2003)

    Article  ADS  Google Scholar 

  35. Whitney C.: Random Processes in Physical Systems. Wiley, New York (1990)

    MATH  Google Scholar 

  36. Varian, H.: Bookstrap Tutorial. http://www.mathematica-journal.com/issue/v9i4/

  37. Golterman M.F.L., Smit J.: Self energy and flavor interpretation of staggered fermions. Nucl. Phys. B 245, 61 (1984)

    Article  ADS  Google Scholar 

  38. Creutz, M.: Why rooting fails. PoS (Lattice 2007) 007 (2007); arXiv:0708.1295 [hep-lat]; arXiv:0805.1350 [hep-lat]

  39. Bernard, C., Golterman, M., Shamir, Y., Sharpe, S.R.: ’t Hooft vertices, partial quenching, and rooted staggered QCD. Phys. Rev. D 77, 114504 (2008); arXiv:0711.0696 [hep-lat], Phys. Rev. D 78, 078502 (2008); arXiv:0808.2056 [hep-lat]

    Google Scholar 

  40. Adams D.H.: The Rooting issue for a lattice fermion formulation similar to staggered fermions but without taste mixing. Phys. Rev. D 77, 105024 (2008)

    Article  ADS  Google Scholar 

  41. Skullerud J., Kizilersü A.: Quark gluon vertex from lattice QCD. JHEP 0209, 013 (2002) arXiv:hep-ph/0205318

    Article  ADS  Google Scholar 

  42. Boucaud, Ph., et al.: Quark propagator and vertex: systematic corrections of hyperbolic artifacts from lattice simulations. Phys. Lett. B 575, 256 (2003); arXiv:hep-lat/0307026

  43. Eichten E.J., Feinberg F.L.: Dynamical symmetry breaking of non-Abelian gauge symmetries. Phys. Rev. D 10, 3254 (1974)

    Article  ADS  Google Scholar 

  44. Martinelli G., Pittori C., Sachrajda C.T., Testa M., Vladikas A.: A genaral method for non-perturbative renormalization of lattice operators. Nucl. Phys. B 445, 81 (1995)

    Article  ADS  Google Scholar 

  45. Furui S., Nakajima H.: Infrared features of unquenched lattice Landau gauge QCD. Few Body Syst. 40, 101 (2006)

    Article  ADS  Google Scholar 

  46. Kondo K.-I., Murakami T., Shinohara T., Imai T.: Renormalizing a BRST invariant composite operator of mass dimension 2 in Yang–Mills theory. Phys. Rev. D 65, 085034 (2002)

    Article  ADS  MathSciNet  Google Scholar 

  47. Deur A., Burkert V., Chen J.P., Korsch W.: Experimental determination of the effective strong coupling constant. Phys. Lett. B 650, 244 (2006)

    ADS  Google Scholar 

  48. Furui S.: The color antisymmetric ghost propagator and one-loop vertex renormalization. Prog. Theor. Phys. 119, 149 (2008) arXiv:0709.2804 [hep-ph]

    Article  MATH  ADS  Google Scholar 

  49. Furui, S.: Roles of the color antisymmetric ghost propagator in the infrared QCD. Few Body Syst. 43 (in press). http://dx.doi.org/10.1007/s00601-008-0005-4; arXiv:0805.0680 [hep-lat]

  50. D’Adda A., Veccia P.Di.: Supersymmetry and instantons. Phys. Lett. B 73, 162 (1978)

    Article  ADS  Google Scholar 

  51. Cooper F., Khare A., Sukhatme U.: Supersymmetry in Quantum Mechanics. World Scientific, Singapore (2001)

    MATH  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Sadataka Furui.

Additional information

An erratum to this article can be found at http://dx.doi.org/10.1007/s00601-009-0053-4

Rights and permissions

Reprints and permissions

About this article

Cite this article

Furui, S. Propagator of the Lattice Domain Wall Fermion and the Staggered Fermion. Few-Body Syst 45, 51–63 (2009). https://doi.org/10.1007/s00601-009-0008-9

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s00601-009-0008-9

Keywords

Navigation