Few-Body Systems

, Volume 44, Issue 1–4, pp 241–244 | Cite as

Three-electron quantum dot in a magnetic field

  • R. Ya. KezerashviliEmail author
  • L. L. Margolin
  • Sh. M. Tsiklauri


Three electrons confined by a parabolic well in a two-dimensional quantum dot and interacting via a logarithmic potential in a magnetic field are treated in the framework of the hyperspherical functions (HF) method by expanding the wave function in terms of the three-body symmetrized HF and the hyperradial functions of noninteracting trapped electrons. The binding energies and pair correlation function are calculated.


Pair Correlation Function Faddeev Equation Logarithmic Potential Homogeneous Algebraic Equation Classical Ground State 
These keywords were added by machine and not by the authors. This process is experimental and the keywords may be updated as the learning algorithm improves.


Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.


  1. Reimann, SM, Manninen, M 2002Rev Mod Phys741283CrossRefADSGoogle Scholar
  2. Johnson, NF, Quiroga, L 1995Phys Rev Lett74427ADSGoogle Scholar
  3. Ruan, WY, Cheung, H-F 1997J Phys910901Google Scholar
  4. Braun, M, Kartavtsev, OI 2001Nucl Phys A698519CrossRefADSGoogle Scholar
  5. Jibuti RI, Krupennikova NB (1984) Method of hyperspherical functions for few-body systems. Metsniereba, Tbilisi (in Russian)Google Scholar
  6. Budalov, VM, Peeters, FM 1994Phys Rev B492667CrossRefADSGoogle Scholar

Copyright information

© Springer-Verlag 2008

Authors and Affiliations

  • R. Ya. Kezerashvili
    • 1
    Email author
  • L. L. Margolin
    • 2
  • Sh. M. Tsiklauri
    • 1
  1. 1.Physics Department, New York City College of TechnologyThe City University of New YorkBrooklynUSA
  2. 2.Marymount Manhattan CollegeNew YorkUSA

Personalised recommendations