Skip to main content
Log in

A New Approach to the 3D Faddeev Equation for Three-body Scattering

  • Published:
Few-Body Systems Aims and scope Submit manuscript

Abstract

A novel approach to solve the Faddeev equation for three-body scattering at arbitrary energies is proposed. This approach disentangles the complicated singularity structure of the free three-nucleon propagator leading to the moving and logarithmic singularities in standard treatments. The Faddeev equation is formulated in momentum space and directly solved in terms of momentum vectors without employing a partial wave decomposition. In its simplest form the Faddeev equation for identical bosons, which we are using, is an integral equation in five variables, magnitudes of relative momenta and angles. The singularities of the free propagator and the deuteron propagator are now both simple poles in two different momentum variables, and thus can both be integrated with standard techniques.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Similar content being viewed by others

References

  1. Faddeev L.D.: Sov. Phys. JETP 12, 1014 (1961)

    MathSciNet  Google Scholar 

  2. Faddeev L.D.: Mathematical Aspects of the Three Body Problem in Quantum Scattering Theory. D. Darey, London (1965)

    MATH  Google Scholar 

  3. Faddeev L.D., Merkuriev S.P.: Quantum Scattering Theory for Several Particle Systems. Kluwer, Dordrecht (1993)

    MATH  Google Scholar 

  4. Mitra A.N.: Three-body problem with separable potentials (I) bound states. Nucl. Phys. 32, 529 (1962)

    Article  MATH  Google Scholar 

  5. Lovelace C.: Practical theory of three-particle states. I. Nonrelativistic. Phys. Rev. 135, 1125 (1964)

    Article  ADS  MathSciNet  Google Scholar 

  6. Schmied E.W., Ziegelmann H.: The Quantum Mechanical Three-Body Problem. Vieweg Tracts in Pure and Applied Physics, vol. 2. Pergamon, Oxford (1974)

    Google Scholar 

  7. Redish, E.F.: Lectures in the Quantum Three-Body Problem, Lecture Series in Theoretical Nuclear Physics, University of Maryland, Tr 77-060 (1976)

  8. Glöckle W.: The Quantum Mechanical Few-Body Problem. Springer, Berlin (1983)

    Google Scholar 

  9. Hetherington J.H., Schick L.H.: Exact multiple-scattering analysis of low-energy elastic K–d scattering with separable potentials. Phys. Rev. 137, 935 (1965)

    Article  ADS  Google Scholar 

  10. Cahill R.T., Sloan I.H.: Theory of neutron–deuteron breakup. Nucl. Phys. A 165, 161 (1971)

    Article  ADS  Google Scholar 

  11. Kloet W.M., Tjon J.A.: A study of break up processes in neutron–deuteron scattering. Nucl. Phys. A 210, 380 (1973)

    Article  ADS  Google Scholar 

  12. Witała H., Cornelius T., Glöckle W.: Elastic scattering and break-up processes in the n–d system. Few-body Systems 3, 123 (1988)

    Article  ADS  Google Scholar 

  13. Witała H., Glöckle W., Cornelius T.: Nucleon-induced deuteron breakup: analysis of 14.1 MeV data by rigorous Faddeev calculations with meson-exchange NN interactions. Phys. Rev. C 39, 384 (1989)

    Article  ADS  Google Scholar 

  14. Glöckle W. et al.: The three-nucleon continuum: achievements, challenges, and applications. Phys. Rep. 274, 107 (1996)

    Article  ADS  Google Scholar 

  15. Glöckle, W.: In: Pike, R., Sabatier, P. (eds.) Scattering, Scattering and Inverse Scattering in Pure and Applied Science, pp. 1339–1359. Academic Press, New York (2002)

  16. Witala H., Glöckle W., Cornelius T.: Nucleon-induced deuteron breakup: analysis of 14.1 MeV data by rigorous Faddeev calculations with meson-exchange NN interactions. Phys. Rev. C 63, 024007 (2001)

    Article  ADS  Google Scholar 

  17. Epelbaum E. et al.: Three-nucleon forces from chiral effective field theory. Phys. Rev. C 66, 064001 (2002)

    Article  ADS  Google Scholar 

  18. Deltuva A., Fonseca A.C., Sauer P.U.: Momentum-space description of three-nucleon breakup reactions including the Coulomb interaction. Phys. Rev. C 72, 054004 (2005)

    Article  ADS  Google Scholar 

  19. Liu H., Elster Ch., Glöckle W.: Three-body scattering at intermediate energies. Phys. Rev. C 72, 054003 (2005)

    Article  ADS  Google Scholar 

  20. Elster Ch., Lin T., Glöckle W., Jeschonnek S.: Faddeev and Glauber calculations at intermediate energies in a model for n+d scattering. Phys. Rev. C 78, 034002 (2008)

    Article  ADS  Google Scholar 

  21. Lin T., Elster Ch., Polyzou W.N., Glöckle W.: Relativistic effects in exclusive PD breakup scattering at intermediate energies. Phys. Lett. B 660, 345 (2008)

    Article  ADS  Google Scholar 

  22. Lin, T., Elster, Ch., Polyzou, W.N., Glöckle, W.: Poincaré invariant three-body scattering at intermediate energies. arXiv:0801.3210 [nucl-th]

  23. Witala, H., Glöckle, W.N.: A new form of three-body Faddeev equations in the continuum. arXiv:0806.2757 [nucl-th]

  24. Alt E.O., Grassberger P., Sandhas W.: Reduction of the three-particle collision problem to multichannel two-particle Lippmann–Schwinger equations. Nucl. Phys. B 2, 167 (1967)

    Article  ADS  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Ch. Elster.

Rights and permissions

Reprints and permissions

About this article

Cite this article

Elster, C., Glöckle, W. & Witała, H. A New Approach to the 3D Faddeev Equation for Three-body Scattering. Few-Body Syst 45, 1–10 (2009). https://doi.org/10.1007/s00601-008-0003-6

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s00601-008-0003-6

Keywords

Navigation