Few-Body Systems

, Volume 33, Issue 4, pp 219–232 | Cite as

Regarding Proton Form Factors

  • J. C. R. Bloch
  • A. Krassnigg
  • C. D. Roberts

Abstract.

The proton’s elastic electromagnetic form factors are calculated using an ansatz for the nucleon’s Poincaré covariant Faddeev amplitude that only retains scalar diquark correlations. A spectator approximation is employed for the current. On the domain of q2 accessible in modern precision experiments these form factors are a sensitive probe of nonperturbative strong interaction dynamics. The ratio of Pauli and Dirac form factors can provide realistic constraints on models of the nucleon and thereby assist in developing an understanding of nucleon structure.

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

Copyright information

© Springer-Verlag/Wien 2003

Authors and Affiliations

  • J. C. R. Bloch
    • 1
  • A. Krassnigg
    • 2
  • C. D. Roberts
    • 2
  1. 1.DFG Research Center “Mathematics for Key Technologies,” c/o Weierstrass Institute for Applied Analysis and Stochastics, Mohrenstrasse 39, D-10117 Berlin, GermanyDE
  2. 2.Physics Division, Argonne National Laboratory, Argonne, IL 60439-4843, U.S.A.US

Personalised recommendations