An update on the role of free radicals and antioxidant defense in human disease

  • G. Vendemiale
  • I. Grattagliano
  • E. Altomare


Mounting clinical and experimental evidence indicates that free radicals play important roles in many physiological and pathological conditions. The wider application of free radical measurement has increased awareness of functional implications of radical-induced impairment of the oxidative/antioxidative balance. In the following review, the role of oxygen free radicals in some human and experimental pathological conditions is described, with particular emphasis on the mechanisms by which they produce oxidative damage to lipids, proteins, and nucleic bases. The role of free radicals and the activation of the antioxidant systems in arteriosclerosis and ageing, diabetes, ischemia/reperfusion injury, ethanol intoxication, and liver steatosis is discussed. Therapeutic approaches to the use of antioxidants have been described and prospects for clinical use have been considered.

Key words

Antioxidants Free radicals Glutathione Oxidized proteins Oxidative stress Vitamin E 


  1. 1.
    Suthanthiran M, Anderson ME, Sharma VK, Meister A. GSH regulates activation-dependent DNA synthesis in highly purified normal human T lymphocytes stimulated via the CD2 and CD3 antigens. Proc Natl Acad Sci USA 1990; 87:9943.CrossRefGoogle Scholar
  2. 2.
    Chance B, Sies H, Boveris A. Hydroperoxide metabolism in mammalian organ. Physiol Rev 1979; 59:527.PubMedGoogle Scholar
  3. 3.
    Altomare E, Grattagliano I, Vendemiale G, Palmieri V, Palasciano G. Acute ethanol administration induces oxidative modifications in rat pancreatic tissue. Gut 1996; 38:742.PubMedCrossRefGoogle Scholar
  4. 4.
    Grattagliano I, Vendemiale G, Errico F, Bolognino A, Lilo F, Salerno MT, Altomare E. Chronic ethanol intake induces oxidative alterations in rat testis. J Appl Toxicol 1997; 17:307.PubMedCrossRefGoogle Scholar
  5. 5.
    Guerrieri F, Vendemiale G, Grattagliano I, Cocco T, Pellecchia G, Altomare E. Mitochondrial oxidative alterations following partial hepatectomy. Free Radic Biol Med 1999; 26:34.PubMedCrossRefGoogle Scholar
  6. 6.
    Fink R, Marjot DH, Cawood P. Increased free-radical activity in alcoholics. Lancet 1985; II:291.CrossRefGoogle Scholar
  7. 7.
    Altomare E, Vendemiale G, Albano O. Hepatic glutathione content in patients with alcoholic and non-alcoholic liver disease. Life Sci 1988; 43:991.PubMedCrossRefGoogle Scholar
  8. 8.
    Gut A, Shiel N, Kay PM, Segal I, Braganza JM. Heightened free radical activity in blacks with chronic pancreatitis at Johannesburg, South Africa. Clin Chim Acta 1994; 230:189.PubMedCrossRefGoogle Scholar
  9. 9.
    De Capoa A, Ferraro M, Lavia P, Pelliccia F, Finazzi-Agro A. Silver staining of the nucleolus organizer regions (NOR) requires clusters of sulfhydryl groups. J Histochem Cytochem 1982; 30:908.PubMedGoogle Scholar
  10. 10.
    Pascale R, Pirisi L, Daino L, Zanetti S, Satta A, Bartoli E, Feo F. Role of phosphatidylethanolamine methylation in the synthesis of phosphatidylcholine by hepatocytes isolated from choline-deficient rats. FEBS Lett 1982; 145:293.PubMedCrossRefGoogle Scholar
  11. 11.
    Vendemiale G, Guerrieri F, Grattagliano I, Didonna D, Muolo L, Altomare E. Mitochondrial oxidative phosphorylation and intracellular glutathione compartmentation during rat liver regeneration. Hepatology 1995; 21:1450.PubMedGoogle Scholar
  12. 12.
    Shaw S, Jayatilleke E, Lieber CS. Lipid peroxidation as a mechanism of alcoholic liver injury: role of iron mobilization and microsomal induction. Alcohol 1988; 5:135.PubMedCrossRefGoogle Scholar
  13. 13.
    Britton RS, O’Neill R, Bacon BR. Hepatic mitochondrial malondialdehyde metabolism in rats with chronic iron overload. Hepatology 1990; 11:93.PubMedCrossRefGoogle Scholar
  14. 14.
    Sokol RJ, Twedt D, McKim JM, Devereaux MW, Karrer FM, Kam I, Steigman G von, Narkewicz MR, Bacon BR, Britton RS, Neuschwander-Tetri BA. Oxidant injury to hepatic mitochondria in patients with Wilson’s disease and Bedlington terriers with copper toxicosis. Gastroenterology 1994; 107:1788.PubMedGoogle Scholar
  15. 15.
    Sokol RJ, Devereaux M, Mierau GW, Hambige KM, Shikes RH. Oxidant injury to hepatic mitochondrial lipids in rats with dietary copper overload. Modification by vitamin E deficiency. Gastroenterology 1990; 99:1061.PubMedGoogle Scholar
  16. 16.
    Esterbauer H, Schaur KG, Zollner H. Chemistry and biochemistry of 4-hydroxynonenal, malondialdehyde and related aldehydes. Free Radic Biol Med 1991; 11:81.PubMedCrossRefGoogle Scholar
  17. 17.
    Fairhurst S, Barber DJ, Clark B, Horton AA. Studies on paracetamol-induced lipid peroxidation. Toxicology 1982; 23:249.PubMedCrossRefGoogle Scholar
  18. 18.
    Shaw S, Jayatilleke E, Ross WA, Gordon ER, Lieber CS. Ethanol-induced lipid peroxidation: potentiation by long-term alcohol feeding and attenuation by methionine. J Lab Clin Med 1981; 98:417.PubMedGoogle Scholar
  19. 19.
    Fujii S, Dale GL, Beutler E. GSH-dependent protection against oxidative damage of the human red cell membrane. Blood 1984; 63:1096.PubMedGoogle Scholar
  20. 20.
    Grattagliano I, Vendemiale G, Sabbà C, Buonamico P, Altomare E. Oxidation of circulating proteins in alcoholics: role of acetaldehyde and xanthine oxidase. J Hepatol 1996; 25:28.PubMedCrossRefGoogle Scholar
  21. 21.
    Casini A, Ceni E, Salzano R, Biondi P, Parola M, Galli A, Foschi M, Caligiuri A, Pinzani M, Surrenti C. Neutrophil-derived superoxide anion induces lipid peroxidation and stimulates collagen synthesis in human hepatic stellate cells: role of nitric oxide. Hepatology 1997; 25:361.PubMedCrossRefGoogle Scholar
  22. 22.
    Pinzani M, Marra F, Carloni V. Signal transduction in hepatic stellate cells. Liver 1998; 18:2.PubMedGoogle Scholar
  23. 23.
    Oliver CN, Ahn BW, Moerman EJ, Goldstein S, Stadtman ER. Age-related changes in oxidized proteins. J Biol Chem 1987; 262:5488.PubMedGoogle Scholar
  24. 24.
    Augusteyn RC. Protein modification in cataract: possible mechanisms. In: Duncan G, ed. Mechanisms of cataract formation in the human lens. New York: Academic Press; 1981:71–115.Google Scholar
  25. 25.
    Guerrieri F, Vendemiale G, Turturro N, Fratello A, Furio A, Muolo L, Grattagliano I, Papa S. Alteration of mitochondrial F0F1 ATP synthase during aging. Possible involvement of oxygen free radicals. Ann N Y Acad Sci 1996; 786:62.PubMedCrossRefGoogle Scholar
  26. 26.
    Ajiboye R, Harding JJ. The non enzymatic glycosylation of bovine lens proteins by glucosamine and its inhibition by aspirin, ibuprofen and glutathione. Exp Eye Res 1989; 49:31.PubMedCrossRefGoogle Scholar
  27. 27.
    Shigenaga HK, Hagen TM, Ames HN. Oxidative damage and mitochondrial decay in aging. Proc Natl Acad Sci USA 1994; 91:10771.PubMedCrossRefGoogle Scholar
  28. 28.
    Wieland P, Lauterburg BH. Oxidation of mitochondrial proteins and DNA following administration of ethanol. Biochem Biophys Res Commun 1995; 213:815.PubMedCrossRefGoogle Scholar
  29. 29.
    Rengstrom J, Nilsson J, Tornvall P, Landou C, Hamsten A. Susceptibility to low-density lipoprotein oxidation and coronary atherosclerosis in man. Lancet 1992; 339:1183.CrossRefGoogle Scholar
  30. 30.
    Steinbrecher UP, Parathasarathy S, Leake DS, Witztum JL, Steinberg D. Modification of low density lipoprotein by endothelial cells involves lipid peroxidation and degradation of low density lipoprotein phospholipids. Proc Natl Acad Sci USA 1984; 81:3883.PubMedCrossRefGoogle Scholar
  31. 31.
    Berliner JA, Territo MC, Sevanian A, Ramin S, Kim JA, Bamshad B, Esterson M, Fogelman AM. Minimally modified low density lipoprotein stimulates monocyte endothelial interactions. J Clin Invest 1990; 85:1260.PubMedCrossRefGoogle Scholar
  32. 32.
    Wanatabe J, Umeda F, Wakasugi H, Ibayashi H. Effect of vitamin E on platelet aggregation in diabetes mellitus. Thromb Haemost 1984; 51:313.Google Scholar
  33. 33.
    Jessup W, Rankin SM, De Whalley CV, Hoult JRS, Scott J, Leake DS. Alpha-tocopherol consumption during low-density lipoprotein oxidation. Biochem J 1990; 265:399.PubMedGoogle Scholar
  34. 34.
    Carney JM, Starke-Reed PE, Oliver CN, Landum RW, Cheng MS, Wu JF, Floyd RA. Reversal of age-related increase in brain protein oxidation, decrease in enzyme activity, and loss in temporal and spatial memory by chronic administration of the spin-trapping compound N-tert-butyl-α-phenylnitrone. Proc Natl Acad Sci USA 1991;88:3633.PubMedCrossRefGoogle Scholar
  35. 35.
    Wiztum JL, Steinberg D. Role of oxidized low density lipoprotein in atherogenesis. J Clin Invest 1991; 88:1785.CrossRefGoogle Scholar
  36. 36.
    De La Asuncion JG, Millan A, Pla R, Bruseghini L, Esteras A, Pallardo FV, Sastre J, Vina J. Mitochondrial glutathione oxidation correlates with age-associated oxidative damage to mitochondrial DNA. FASEB J 1996; 10:333.PubMedGoogle Scholar
  37. 37.
    Gey F, Puska P, Jordan P, Moser UK. Inverse correlation between plasma vitamin E and mortality from ischemic heart disease in cross-cultural epidemiology. Am J Clin Nutr 1991; 53:326S.Google Scholar
  38. 38.
    Altomare E, Vendemiale G, Procacci V, Chicco D, Cirelli F. Increased lipid peroxidation in type-2 poorly controlled diabetic patients. Diabetes Metab 1992; 18:264.Google Scholar
  39. 39.
    Altomare E, Vendemiale G, Grattagliano I, Angelini P, Micelli-Ferrari T, Cardia L. Human diabetic cataract: role of lipid peroxidation. Diabetes Metab 1995; 21:173.Google Scholar
  40. 40.
    Maxwell SRJ, Thomason H, Sandler D, Legneu C, Baxter MA, Thorpe GHG, Jones AF, Barnett AH. Antioxidant status in patients with uncomplicated insulin-dependent and non-insulin dependent diabetes mellitus. Eur J Clin Invest 1997; 27:484.PubMedCrossRefGoogle Scholar
  41. 41.
    Lyon TJ, Li W, Wells-Knecht MC, Jokl R. Toxicity of mildly modified low density lipoproteins to cultured retinal capillary endothelial cells and pericytes. Diabetes 1994; 43:1090.CrossRefGoogle Scholar
  42. 42.
    Baynes JW. Role of oxidative stress in development of complications in diabetes. Diabetes 1991; 40:405.PubMedCrossRefGoogle Scholar
  43. 43.
    Cheng M, Gonzales G. The effect of high glucose and oxidative stress on lens metabolism, aldose reductase and senile cataractogenesis. Metabolism 1986; 35:10.PubMedCrossRefGoogle Scholar
  44. 44.
    Ceriello A, Pirisi M. Is oxidative stress the missing link between insulin resistance and atherosclerosis? Diabetologia 1996; 39:357.CrossRefGoogle Scholar
  45. 45.
    Altomare E, Grattagliano I, Vendemiale G, Micelli Ferrari, Signorile A, Cardia L. Oxidative protein damage in human diabetic eye: evidence for a retinal participation. Eur J Clin Invest 1997; 27:141.PubMedCrossRefGoogle Scholar
  46. 46.
    Williamson JR, Chang K, Frangos M, Hasan KS, Ido Y, Kawamura T, Nyengaard JR, Van Den Enden M, Kilo C, Tilton RG. Hyperglycaemic pseudohypoxia and diabetic complications. Diabetes 1993; 42:801.PubMedCrossRefGoogle Scholar
  47. 47.
    Vendemiale G, Grattagliano I, Micelli-Ferrari T, Cardia L, Altomare E. Abnormal redox status in the lens and vitreous of diabetic subjects. Diabetologia 1996; 39:1239.PubMedCrossRefGoogle Scholar
  48. 48.
    Babizhaev MA, Deev AJ. Lens opacity induced by lipid peroxidation products as a model of cataract associated with retinal disease. Biochem Biophys Acta 1989; 1004:124.Google Scholar
  49. 49.
    Grattagliano I, Vendemiale G, Boscia F, Micelli-Ferrari T, Cardia L, Altomare E. Oxidative retinal products and ocular damages in diabetic patients. Free Radic Biol Med 1998; 25:369.PubMedCrossRefGoogle Scholar
  50. 50.
    Micelli-Ferrari T, Vendemiale G, Grattagliano I, Boscia F, Arnese L, Altomare E, Cardia L. Role of lipid peroxidation in the pathogenesis of myopic and senile cataract. Br J Ophthalmol 1996; 80:840.PubMedCrossRefGoogle Scholar
  51. 51.
    Rao NA, Sevanian A, Fernandez MAS, Romero JL, Faure JP, Kozak Y de, Till GO, Marak GE. Role of oxygen radicals in experimental allergic uveitis. Invest Ophthalmol Vis Sci 1987; 28:886.PubMedGoogle Scholar
  52. 52.
    Martensson J, Steinherz R, Jain A, Meister A. GSH ester prevents buthionine sulfoximine-induced cataracts and lens epithelial cell damage. Proc Natl Acad Sci USA 1989; 86:8728.Google Scholar
  53. 53.
    McCord JM. Oxygen-derived free radicals in postischemic tissue injury. N Engl J Med 1985; 312:159.PubMedGoogle Scholar
  54. 54.
    Kobayashi H, Nonami T, Kurokawa T, Marada A, Nakao A, Sugiyama S, Ozawa T, Takagi H. Changes in the glutathione redox system during ischemia and reperfusion in rat liver. Scand J Gastroenterol 1992; 27:711.PubMedCrossRefGoogle Scholar
  55. 55.
    Samarasinghe DA, Farrell GC. The central role of sinusoidal endothelial cells in hepatic hypoxia-reoxygenation injury in the rat. Hepatology 1996; 24:1230.PubMedCrossRefGoogle Scholar
  56. 56.
    Kuzume M, Nakano H, Yamaguchi M, Matsumiya A, Shimokohbe G, Kitamura N, Nagasaki H, Kumada K. A monoclonal antibody against ICAM-1 suppresses hepatic ischemia-reperfusion injury in rats. Eur Surg Res 1997; 27:93.CrossRefGoogle Scholar
  57. 57.
    Jaeschke H, Bautista AP, Spolarics Z, Spitzer JJ. Superoxide generation by Kupffer cells and priming of neutrophils during reperfusion after hepatic ischemia. Free Radic Res Commun 1991; 15:277.PubMedCrossRefGoogle Scholar
  58. 58.
    Jaeschke H, Farood A. Neutrophils and Kupffer cell-induced oxidant stress and ischemia-reperfusion injury in rat liver. Am J Physiol 1991; 260:G355.Google Scholar
  59. 59.
    Jaeshke H, Smith CV, Mitchell JR. Reactive oxygen species during ischemia-reflow injury in isolated perfused rat liver. J Clin Invest 1988; 81:1240.CrossRefGoogle Scholar
  60. 60.
    Bilzer M, Lauterburg BH. Oxidant stress and potentiation of ischemia/reperfusion injury to the perfused rat liver by human polymorphonuclear leukocytes. J Hepatol 1994; 20:473.PubMedCrossRefGoogle Scholar
  61. 61.
    Shibuya H, Ohkohchi N, Seya K, Satomi S. Kupffer cells generate superoxide anions and modulate reperfusion injury in rat livers after cold preservation. Hepatology 1997; 25:356.PubMedCrossRefGoogle Scholar
  62. 62.
    Lieber CS. Alcohol, protein metabolism and liver injury. Gastroenterology 1980; 79:373.PubMedGoogle Scholar
  63. 63.
    Stevens VJ, Fantl WJ, Newman BC. Acetaldehyde adducts with hemoglobin. J Clin Invest 1981; 67:361.PubMedCrossRefGoogle Scholar
  64. 64.
    Kera Y, Ohbora Y, Komura S. The metabolism of acetaldehyde and not acetaldehyde itself is responsible for in vivo ethanol-induced lipid peroxidation in rats. Biochem Pharmacol 1988; 37:363.Google Scholar
  65. 65.
    Albano E, Tomasi A, Goria-Gatti L, Dianzani MU. Spin trapping of free radical species produced during the microsomal metabolism of ethanol. Chem Biol Interact 1988; 65:223.PubMedCrossRefGoogle Scholar
  66. 66.
    Vendemiale G, Grattagliano I, Signorile A, Altomare E. Ethanol-induced changes of intracellular thiol compartmentation and protein redox status in the rat liver: effect of tauroursodeoxycholate. J Hepatol 1998; 28:46.PubMedCrossRefGoogle Scholar
  67. 67.
    Videla LA, Valenzuela A. Alcohol ingestion, liver GSH and lipoperoxidation: metabolic interrelations and pathological implications. Life Sci 1982; 31:2395.PubMedCrossRefGoogle Scholar
  68. 68.
    Lauterburg BH, Bilzer M. Mechanisms of acetaldehyde hepatotoxicity. J Hepatol 1988; 7:384.PubMedCrossRefGoogle Scholar
  69. 69.
    Uchida T, Kronborg I, Peters RL. Giant mitochondria in the alcoholic liver diseases. Their identification, frequency and pathologic significance. Liver 1984; 4:29.PubMedGoogle Scholar
  70. 70.
    Mufti SI, Eskelson CD, Odeleye OE, Nachiappan V. Alcohol-associated generation of oxygen free radicals and tumor promotion. Alcohol Alcohol 1993; 28:621.PubMedGoogle Scholar
  71. 71.
    Altomare E, Grattagliano I, Didonna D, Gentile A, Vendemiale G. Gastric and intestinal ethanol toxicity in the rat. Effect on glutathione level and the role of alcohol and acetaldehyde metabolisms. Ital J Gastroenterol Hepatol 1998; 90:86.Google Scholar
  72. 72.
    Bora PS, Bora NS, Wu XL, Lange LG. Molecular cloning, sequencing, and expression of human myocardial fatty acid ethyl ester synthase-III cDNA. J Biol Chem 1991; 26:16774.Google Scholar
  73. 73.
    Clot P, Tabone M, Aricò S, Albano E. Monitoring oxidative damage in patients with liver cirrhosis and different daily alcohol intake. Gut 1994; 35:1637.PubMedCrossRefGoogle Scholar
  74. 74.
    Bellentani S, Tiribelli C, Saccoccio G, Sodde M, Fratti N, De Martin C, Cristianini G and the Dionysos Study Group. Prevalence of chronic liver disease in the general population of Northern Italy: the Dionysos Study. Hepatology 1994; 20:1442.PubMedCrossRefGoogle Scholar
  75. 75.
    Strasberg SM, Howard TK, Molmenti EP, Hertl M. Selecting the donor liver: risk factors for poor function after orthotopic liver transplantation. Hepatology 1994; 20:829.PubMedCrossRefGoogle Scholar
  76. 76.
    Caraceni P, Grattagliano I, Domenicali M, Nardo B, Dall’Agata M, Simoncini M, Vendemiale G, Altomare E, Cavallari A, Trevisani F, Bernardi M. Effect of fasting on mitochondrial injury in a rat model of fatty liver (abstract). Hepatology 1998; 28:324AGoogle Scholar
  77. 77.
    Lauterburg BH, Velez MA. GSH deficiency in alcoholics: risk factor for paracetamol hepatotoxicity. Gut 1988; 29:1153.PubMedCrossRefGoogle Scholar
  78. 78.
    Grattagliano I, Wieland P, Schranz C, Lauterburg BH. Effect of oral GSH monoethyl ester and GSH on circulating and hepatic sulfhydryls in the rat. Pharmacol Toxicol 1994; 75:343.PubMedGoogle Scholar
  79. 79.
    Lieber CS, Casini A, DeCarli LM, Kim CL, Lowe K, Sasaki R, Leo MA. S-Adenosyl-methionine attenuates alcohol-induced liver injury in the baboon. Hepatology 1990; 11:165.PubMedCrossRefGoogle Scholar
  80. 80.
    Frezza M, Surrenti C, Mantillo G, Fiaccadori F, Bortolini M, DiPadova C. Oral S-Adenosylmethionine in the symptomatic treatment of intrahepatic cholestasis: a doubleblind, placebocontrolled study. Gastroenterology 1990; 99:211.PubMedGoogle Scholar
  81. 81.
    Prescott LF, Ballantyne A, Park J, Adriaenssens P, Proudfoot AT. Treatment of paracetamol (acetaminophen) poisoning withN-acetylcysteine. Lancet 1977; II:432.CrossRefGoogle Scholar
  82. 82.
    Grattagliano I, Wieland P, Schranz C, Lauterburg BH. Disposition of glutathione monoethyl ester in the rat: glutathione ester is a slow release form of extracellular glutathione. J Pharmacol Exp Ther 1995; 272:484.PubMedGoogle Scholar
  83. 83.
    Grattagliano I, Lauterburg BH. Reperfusion injury of the liver: role of mitochondria and protection by glutathione ester. J Surg Res 1999; in press.Google Scholar
  84. 84.
    Neuschwander-Tyetri B, Ferrell LD, Sukhabote RJ, Grendell JH. Glutathione monoethyl ester ameliorates caerulein-induced pancreatitis in the mouse. J Clin Invest 1992; 89:109.CrossRefGoogle Scholar
  85. 85.
    Levy EJ, Anderson ME, Meister A. Transport of glutathione diethyl ester into human cells. Proc Natl Acad Sci USA 1993; 90:9171.PubMedCrossRefGoogle Scholar

Copyright information

© Springer-Verlag 1999

Authors and Affiliations

  • G. Vendemiale
    • 1
  • I. Grattagliano
    • 1
  • E. Altomare
    • 1
  1. 1.Department of Internal and Occupational MedicineUniversity of Bari - Medical SchoolBariItaly

Personalised recommendations