Skip to main content
Log in

Influence of iron overload on manganese, zinc, and copper concentration in rat tissues in vivo: study of liver, spleen, and brain

  • Original
  • Published:
International Journal of Clinical and Laboratory Research

Abstract

Although hemochromatosis and pathological situations due to chronic iron overload have been extensively described, there is little information about the influence of iron on other trace elements in the cell. The aim of this study was to investigate changes in the concentration of zinc, manganese, and copper in the liver, spleen, and brain of rats after iron overload. Iron overload in Wistar rats was achieved by iron-supplemented diet or by intraperitoneal or intravenous injection of polymaltose iron. Iron, zinc, manganese, and copper were determined by atomic absorption spectrophotometry. Iron overload in rats, regardless of the route of its application, resulted in an increase not only of iron but also of zinc and manganese in the liver and the spleen, whereas the content of these metals in the brain did not change. The copper content of the liver, spleen, and brain remained the same after iron overload. The increase of zinc and manganese in the liver and spleen following iron overload was probably a result not only of increased intestinal absorption but also of increased uptake from the cell. This is also supported by the fact that no increase in the zinc and manganese concentrations occurred in the brain since, despite iron overload, the iron content remained constant.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Similar content being viewed by others

References

  1. Brissot P, Campion JP, Guillouzo A, Allain H, Messner M, Simon M, Ferrand B, Bourel M. Experimental hepatic iron overload in the baboon: results of a two-year study. Evolution of biological and morphological hepatic parameters of iron overload. Dig Dis Sci 1983; 28: 616.

    Article  PubMed  CAS  Google Scholar 

  2. Park CH, Bacon BR, Brittenham GM, Tavill AS. Pathology of dietary carbonyl iron overload in rats. Lab Invest 1987; 5:555.

    Google Scholar 

  3. Oliver RAM. Siderosis following transfusions of blood. J Pathol 1959; 77:171.

    Article  CAS  Google Scholar 

  4. Risdon RA, Barry M, Flynn DM. Transfusional iron overload: the relationship between tissue iron concentration and hepatic fibrosis in thalassaemia. J Pathol 1975; 116:83.

    Article  PubMed  CAS  Google Scholar 

  5. Bothwell TH, Bradlow BA. Siderosis in the Bantu: a combined histopathologic and chemical study. Arch Pathol 1969; 70:279.

    Google Scholar 

  6. Bothwell TH, Abrahams C, Bradlow BA, Charlton RW. Idiopathic and Bantu hemochromatosis: comparative histological study. Arch Pathol 1965; 79:163.

    PubMed  CAS  Google Scholar 

  7. Adams PC, Bradley C, Frei JV. Hepatic zinc in hemochromatosis. Clin Invest Med 1991; 14:16.

    PubMed  CAS  Google Scholar 

  8. Bothwell TH, Charlton RW. Hemochromatosis. In: Bothwell TH, Charlton RW, Cook JD, Finch CA, eds. Iron metabolism in man. Oxford: Blackwell Scientific; 1979:971–999.

    Google Scholar 

  9. Butt EM, Nusbaum RE, Gilmour TC, Didio SL. Trace metal patterns in disease states. I. Hemochromatosis and refractory anemia. Am J Clin Pathol 1956; 26:225.

    PubMed  CAS  Google Scholar 

  10. Altstatt LB, Pollack S, Feldman MH, Reba RC, Crossby WH. Liver manganese in hemochromatosis. Proc Soc Exp Biol Med 1967; 124:353.

    PubMed  CAS  Google Scholar 

  11. Vallee BL, Auld DS. Zinc coordination function, and structure of zinc enzymes and other proteins. Biochemistry 1990; 29:5647.

    Article  PubMed  CAS  Google Scholar 

  12. Seiler HG, Sigel A, Sigel H. Handbook on metals in clinical and analytical chemistry. New York: Dekker, 1994.

    Google Scholar 

  13. APHA, AWWA, WPCF. Standard Methods for the Examination of Water and Wastewater, 17th edn. Washington, D.C.: American Public Health Association and Water Pollution Control Federation, 1989.

    Google Scholar 

  14. Kahnke MJ. Atomic absorption spectrophotometry applied to the determination of zinc in formalised human tissue. At Absorb Newsl 1966; 5:7.

    CAS  Google Scholar 

  15. Parker MM, Humoller FL, Mahler DJ. Determination of Copper and zinc in biological material. Clin Chem 1967; 13:40.

    PubMed  CAS  Google Scholar 

  16. Sherman AR, Guthrie HA, Wolinsky I. Interrelationships between dietary iron and tissue zinc and copper levels and serum lipids in rats. Proc Soc Exp Biol Med 1977; 156:396.

    PubMed  CAS  Google Scholar 

  17. Hamilton DL, Bellamy JEC, Valberg JD, Valberg LS. Zinc, cadmium and iron interactions during intestinal absorption in irondeficient mice. Can J Physiol Pharmacol 1978; 56:384.

    PubMed  CAS  Google Scholar 

  18. Davis GK, Microelement interactions of zinc, copper and iron in mammalian species. Ann NY Acad Sci 1980; 355:130.

    Article  PubMed  CAS  Google Scholar 

  19. Pollack S, George JN, Reba RC, Kaufman RM, Crosby WH. The absorption of nonferrous metals in iron deficiency. J Clin Invest 1965; 44:1470.

    Article  PubMed  CAS  Google Scholar 

  20. Cox DH, Harris DL. Effect of excess dietary zinc on iron and copper in the rat. J Nutr 1960; 70:514.

    PubMed  CAS  Google Scholar 

  21. McCormick CC. The tissue specific accumulation of hepatic zinc metallothionein following parenteral iron loading. Proc Soc Exp Biol Med 1984; 176:392.

    PubMed  CAS  Google Scholar 

  22. Maitani T, Suzuki KT. Extents of hepatic zinc-thionein induction in mice given an equimolar dose of various heavy metals. Chem Pharm Bull (Tokyo) 1982; 30:4164.

    CAS  Google Scholar 

  23. Price D, Joshi JG. Ferritin: a zinc detoxicant and a zinc ion donor. Proc Natl Acad Sci USA 1982; 79:3116.

    Article  PubMed  CAS  Google Scholar 

  24. Diez-Ewald M, Weintraub LR, Crosby WH. Interrelationship of iron and manganese metabolism. Proc Soc Exp Biol Med 1968; 129:448.

    PubMed  CAS  Google Scholar 

  25. Baker DH, Halpin KM. Manganese and iron interrelationship in the chick. Poult Sci 1991; 70:146.

    PubMed  CAS  Google Scholar 

  26. Davis CD, Wolf TL, Greger JL, Varying levels of manganese and iron affect absorption and gut endogenous losses of manganese by rats. J Nutr 1992; 122:1300.

    PubMed  CAS  Google Scholar 

  27. Chua AC, Morgan EH. Effects of iron deficiency and iron overload on manganese uptake and deposition in the brain and other organs of the rat. Biol Trace Elem Res 1996; 55:39.

    Article  PubMed  CAS  Google Scholar 

  28. Gunshin H, Mackenzie B, Berger UV, Gunshin Y, Romero MF, Boron WF, Nussberger S, Gollan JL, Heldger MA. Cloning and characterization of a mammalian proton-coupled metal-ion transporter. Nature 1997; 388:482.

    Article  PubMed  CAS  Google Scholar 

  29. Hall AC, Young BW, Bremmer I. Intestinal metallothionein and the mutual antagonism between copper and zinc in rat. J Inorg Biochem 1979; 11:57.

    Article  PubMed  CAS  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Rights and permissions

Reprints and permissions

About this article

Cite this article

Vayenas, D.V., Repanti, M., Vassilopoulos, A. et al. Influence of iron overload on manganese, zinc, and copper concentration in rat tissues in vivo: study of liver, spleen, and brain. Int J Clin Lab Res 28, 183–186 (1998). https://doi.org/10.1007/s005990050041

Download citation

  • Received:

  • Accepted:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s005990050041

Key words

Navigation