Skip to main content

The effects of intraoperative glucose infusion on portal blood insulin concentration and hepatic mitochondrial redox state during surgery: Comparison of short-term and continuous infusions

Abstract

The relationships between the blood glucose level, portal blood immunoreactive insulin (IRI) concentration, ketogenesis, and hepatic mitochondrial redox state associated with intraoperative glucose administration were evaluated in patients undergoing total gastrectomy. A total of 26 patients were randomly allocated to two groups according to the type of infusion given; group 1 was given a short-term glucose infusion of 25 g in 30 min and group 2 was given a continuous glucose infusion of 10 g/h. The blood glucose concentration peaked 30min after the goucose infusion was commenced, then decreased in group 1, despite a continuous rise in group 2. A temporary but significantly higher blood glucose level was observed in group 1 than in group 2, 30 and 60 min after the infusion was commenced. The portal blood IRI concentrations and arterial ketone body ratio (AKBR) continued to increase and the blood ketone body concentrations continued to decline after the start of the glucose infusion in both groups; however, after 60 and 120min, the portal blood IRI and AKBR levels were significantly higher, and the blood ketone body levels significantly lower in group 1 than in group 2. These findings suggest that intraoperative glucose administration is beneficial for insulin secretion, ketogenesis, and the hepatic mitochondrial redox state, and that short-term infusion is superior to continuous infusion.

This is a preview of subscription content, access via your institution.

References

  1. 1.

    Traynor C, Hall GM (1981) Endocrine and metabolic changes during surgery: anaesthetic implications. Br J Anaesth 53:153–160

    PubMed  Article  CAS  Google Scholar 

  2. 2.

    Walsh ES, Traynor C, Paterson JL, Hall GM (1983) Effect of different intraoperative fluid regimens on circulating metabolisms and insulin during abdominal surgery. Br J Anaesth 55:135–140

    PubMed  Article  CAS  Google Scholar 

  3. 3.

    Sieber F, Smith DS, Kupferberg J, Crosby L, Uzzell B, Buzby G, March K, Nann L (1986) Effect of intraoperative glucose on protein catabolism and plasma glucose levels on patients with supratentorial tumors. Anesthesiology 64:453–459

    PubMed  Article  CAS  Google Scholar 

  4. 4.

    Ogata M, Obata K, Matsumoto T, Shigematsu A (1990) The changes in arterial ketone bodies during upper abdominal surgery. J Anesth 4:131–137

    PubMed  Article  CAS  Google Scholar 

  5. 5.

    Hayakawa J, Motohashi H, Sairenji M, Kobayashi O, Usuda Y (1990) Portal and peripheral blood immunoreactive insulin concentrations after glucose infusion during gastrectomy (in Japanese with English abstract). Masui (Jpn J Anasthesiol) 44: 782–785

    Google Scholar 

  6. 6.

    Hayakawa J, Tsuburaya A, Motohashi H, Sairenji M, Kobayashi O, Suzuki K, Usuda Y (1998) Acute effects of distal pancreatectomy on portal and peripheral blood insulin concentrations in patients undergoing total gastrectomy. Surg Today 28:363–366

    PubMed  Article  CAS  Google Scholar 

  7. 7.

    Blackard WG, Nelson NC (1970) Portal and peripheral vein immunoreactive insulin concentrations before and after glucose infusion. Diabetes 19:302–306

    PubMed  CAS  Google Scholar 

  8. 8.

    Blackard WG, Nelson NC (1971) Portal vein insulin concentrations in diabetic subjects. Diabetes 20:286–288

    PubMed  CAS  Google Scholar 

  9. 9.

    Greco AV, Crucitti F, Ghirlanda G, Manna R, Altomonte L, Rebuzzi G, Bertoli A (1979) Insulin and glucagon concentrations in portal and peripheral veins in patients with hepatic cirrhosis. Diabetologia 17:23–28

    PubMed  Article  CAS  Google Scholar 

  10. 10.

    Atkinson DE (1968) The energy charge of the adenylate pool as a regulatory parameter. Interaction with feedback modifiers. Biochemistry 7:4030–4034

    PubMed  Article  CAS  Google Scholar 

  11. 11.

    Yamamoto M, Sato M, Ida T, Ukigusa M, Ozawa K (1978) Obstructive jaundice and hemorrhagic shock. Circ Shock 5:235–249

    PubMed  CAS  Google Scholar 

  12. 12.

    Williamson DH, Lund P, Krebs HA (1967) The redox state of free nicotinamide-adenine dinucleotide in the cytoplasm and mitochondria of rat liver. Biochem J 103:514–527

    PubMed  CAS  Google Scholar 

  13. 13.

    Ozawa K, Aoyama H, Yasuda K, Shimahara Y, Nakatani T, Tanaka J, Yamamoto M, Kamiyama Y, Tobe T (1983) Metabolic abnormalities associated with postoperative organ failure: a redox theory. Arch Surg 118:1245–1251

    PubMed  CAS  Google Scholar 

  14. 14.

    Kimura K, Ukikuksa M, Ozawa K, Tobe T (1978) Changes in mitochondrial redox state following an oral glucose load. Acta Diabet Lat 15:283–286

    Article  CAS  Google Scholar 

  15. 15.

    Ukikusa M, Ozawa K, Shimahara Y, Asano M, Nakatani T, Tobe T (1981) Changes in blood ketone body ratio. Arch Surg 116:781–785

    PubMed  CAS  Google Scholar 

  16. 16.

    Tani T, Taki Y, Jikko A, Minematsu S, Yamamoto M, Kamiyama Y, Tobe T, Ozawa K (1986) Short-term changes in blood ketone body ratio in the phase immediately after hepatic artery embolization: their clinical significance. Am J Med Sci 291:93–100

    PubMed  Article  CAS  Google Scholar 

  17. 17.

    Tanaka J, Ozawa K, Tobe T (1978) Significance of blood ketone body ratio as an indicator of hepatic cellular energy status in jaundice rabbits. Gastroenterology 76:691–696

    Google Scholar 

  18. 18.

    Yamamoto M, Tanaka J, Ozawa K, Tobe T (1980) Significance of acetoacetate/β-hydroxybutyrate ratio in arterial blood as an indicator of the severity of hemorrhagic shock. J Surg Res 28:124–131

    PubMed  Article  CAS  Google Scholar 

  19. 19.

    Nomoto S, Shimahara Y, Kumada K, Ogino H, Okamoto Y, Ban T (1992) Arterial ketone body ratio during cardiopulmonary bypass. J Thorac Cardiovasc Surg 103:1164–1167

    PubMed  CAS  Google Scholar 

  20. 20.

    Mori K, Ozawa K, Kiuchi T, Takada Y, Yamaguchi T, Sadamoto T, Shimahara Y, Kobayashi N, Yamaoka Y, Kumada K (1991) Insulinopenia as a risk factor in hepatectomy and its resolution by intraportal insulin administration. Am J Surg 162:43–49

    PubMed  Article  CAS  Google Scholar 

  21. 21.

    Kiuchi T, Ozawa K, Yamamoto Y, Takayasu T, Maki A, Shimahara Y, Mori K, Kobayashi N, Yamaoka Y, Kumada K (1990) Changes in arterial ketone body ratio in the phase immediately after hepatectomy. Prognostic implications. Arch Surg 125: 655–659

    PubMed  CAS  Google Scholar 

  22. 22.

    Kiuchi T, Shimahara Y, Wakashiro S, Tokunaga Y, Ozaki N, Takayasu T, Mori K, Kobayashi N, Yamaoka Y, Ozawa K (1990) Reduced arterial ketone body ratio during laparotomy: an evaluation of operative stress through the changes in hepatic mitochondrial redox potential. J Lab Clin Med 115:433–440

    PubMed  CAS  Google Scholar 

  23. 23.

    Ozawa K, Yamaoka Y, Nanbu H, Honjo I (1974) Insulin as the primary factor governing changes in mitochondrial metabolism leading to liver regeneration. Am J Surg 127:669–675

    PubMed  Article  CAS  Google Scholar 

  24. 24.

    Ozawa K, Yamada T, Yamaoka Y, Satoh M, Honjo I (1976) Suppression of mitochondrial response to hepatectomy in diabetic rats. Life Sci 19:1865–1872

    PubMed  Article  CAS  Google Scholar 

  25. 25.

    Yamada T, Yamamoto M, Ozawa K, Honjo I (1977) Insulin requirements for hepatic regeneration following hepatectomy. Ann Surg 185:35–43

    PubMed  Article  CAS  Google Scholar 

  26. 26.

    Ozawa K, Kamiyama Y, Kimura K, Yamada T, Yamamoto M, Fujimoto T, Honjo I (1977) Comparison of subcutaneous and intraportal insulin administration on adenylate energy charge of the liver in the diabetic rats. J Lab Clin Med 89:937–945

    PubMed  CAS  Google Scholar 

  27. 27.

    Sieber FE, Smith DS, Traystman RJ, Wollman H (1987) Glucose: reevaluation of its intraoperative use. Anesthesiology 67:72–81

    PubMed  Article  CAS  Google Scholar 

  28. 28.

    Stevens WC, Dolan WM, Gibbons RT, White A, Eger EI, Miller RD, DeJong RH, Elashoff RM (1975) Minimum alveolar concentrations (MAC) of isoflurane with and without nitrous oxide in patients of various ages. Anesthesiology 42:197–200

    PubMed  Article  CAS  Google Scholar 

  29. 29.

    Starr JI, Horwiitz DL, Rubenstein AH, Mako ME (1979) In: Jaffe BM, Behrman HR (eds) Pancreatic hormones, methods of hormones radioimmunoassay. Academic Press, New York, pp 613–674

    Google Scholar 

  30. 30.

    Saifer A, Gerstenfeld S (1958) The photometric microdetermination of bood glucose with glucose oxidase. J Lab Clin Med 51:448–460

    PubMed  CAS  Google Scholar 

  31. 31.

    Mellanby J, Williamson DM (1974) In: Bergmeyer HM (ed) Acetoacetate, methods of enzymatic analysis. Academic Press, New York, pp 1840–1843

    Google Scholar 

  32. 32.

    Williamson DM, Mellanby J (1974) In: Bergmeyer HM (ed)d-(−)-3-hydroxybutyrate, methods of enzymatic analysis. Academic Press, New York, pp 1836–1839

    Google Scholar 

  33. 33.

    McGarry JD, Foster DW (1980) Regulation of hepatic fatty acid oxidation and ketone body production. Annu Rev Biochem 49:395–420

    PubMed  Article  CAS  Google Scholar 

  34. 34.

    Balasse EO, Havel RJ (1971) Evidence for an effect of insulin the peripheral utilization of ketone bodies in dogs. J Clin Invest 50:801–813

    PubMed  Article  CAS  Google Scholar 

  35. 35.

    Ozawa K, Chance B, Tanaka A, Iwata S, Kitai T, Ikai I (1992) Linear correlation between acetoacetate/β-hydroxybutyrate in arterial blood and oxidized flavoprotein/reduced pyridine nucleotide in free-trapped human liver tissue. Biochim Biophys Acta 1138:350–352

    PubMed  CAS  Google Scholar 

  36. 36.

    Starzl TE, Francavilla A, Halgrimson CG, Francavilla FR, Porter KA, Brown TH, Putnam CW (1973) The origin, hormonal nature, and action of hepatotrophic substances in portal venous blood. Surg Gynecol Obstet 137:179–199

    PubMed  CAS  Google Scholar 

  37. 37.

    Starzl TE, Porter KA, Kashiwagi N, Lee Y, Russell WJI, Putnam CW (1975) The effect of diabetes mellitus on portal blood hepatotrophic factors in dogs. Surg Gynecol Obstet 140:549–562

    PubMed  CAS  Google Scholar 

  38. 38.

    Starzl TE, Watanabe K, Porter KA, Putnum CW (1976) Effects of insulin, glucagon, and insulin/glucagon infusions on liver morphology and cell division after complete portocaval shunt in dogs. Lancet 1:821–825

    PubMed  Article  CAS  Google Scholar 

  39. 39.

    Myer RE, Yamaguchi S (1977) Nervous system effects of cardiac arrest in monkeys. Arch Neurol 34:65–67

    Google Scholar 

  40. 40.

    D’Alecy LG, Lundy EF, Barton KJ, Zelenock GB (1986) Dextrose containing intravenous fluids impairs outcome and increases death after eight minutes of cardiac arrest and resuscitation in dogs. Surgery 100:505–511

    PubMed  Google Scholar 

  41. 41.

    Lanier WL, Stangland KJ, Scheithauer BW, Milde JH, Michenfelder JD (1987) The effects of dextrose infusion and head position on neurologic outcome after complete cerebral ischemia in primates: examination of a model. Anesthesiology 66:39–48

    PubMed  Article  CAS  Google Scholar 

  42. 42.

    Nakakimura K, Fleischer JE, Drummond JC, Scheller MS, Zoron MH, Grafe MR, Shapiro HM (1990) Glucose administration before cardiac arrest worsens neurologic outcome in cats. Anesthesiology 72:1005–1011

    PubMed  Article  CAS  Google Scholar 

  43. 43.

    Hoffman WE, Braucher E, Pelligrino DA, Thomas C, Albrecht RF, Miletich DJ (1990) Brain lactate and neurologic outcome following incomplete ischemia in fasted, nonfasted and glucoseloaded rats. Anesthesiology 72:1045–1050

    PubMed  Article  CAS  Google Scholar 

  44. 44.

    Pulsinelli WA, Levy DE, Sigsbee B, Plum F (1983) Increased damage after ischemic stroke in patients with hyperglycemia with or without established diabetes mellitus. Am J Med 74:504–544

    Article  Google Scholar 

  45. 45.

    Longstreth WT Jr, Diehr P, Inui TS (1983) Prediction of awakening after out-of-hospital cardiac arrest. N Engl J Med 308:1378–1382

    PubMed  Article  Google Scholar 

  46. 46.

    Longstreth WT Jr, Inui TS (1984) High blood glucose level on hospital admission and poor neurological recovery after cardiac arrest. Ann Neurol 15:59–63

    PubMed  Article  Google Scholar 

  47. 47.

    Longstreth WT Jr, Diehr P, Cobb LA, Hanson RW, Blair AD (1986) Neurologic outcome and blood glucose level during out-ofhospital cardiopulmonary resuscitation. Neurol 36:1186–1191

    Google Scholar 

  48. 48.

    Woo E, Chan YW, Yu YL, Huang CY (1987) Admission glucose level in relation to mortality and morbidity outcome in 252 stroke patients. Stroke 19:185–191

    Google Scholar 

  49. 49.

    Metz S, Keats AS (1991) Benefit of a glucose-containing priming solution for cardiopulmonary bypass. Anesth Analg 72:428–434

    PubMed  CAS  Google Scholar 

Download references

Author information

Affiliations

Authors

Corresponding author

Correspondence to Jun Hayakawa.

Rights and permissions

Reprints and Permissions

About this article

Cite this article

Hayakawa, J., Motohashi, H., Sairenji, M. et al. The effects of intraoperative glucose infusion on portal blood insulin concentration and hepatic mitochondrial redox state during surgery: Comparison of short-term and continuous infusions. Surg Today 30, 228–234 (2000). https://doi.org/10.1007/s005950050050

Download citation

Key Words

  • arterial ketone body ratio
  • blood glucose concentration
  • blood ketone body concentration
  • glucose infusion
  • portal blood insulin concentration