Skip to main content

Advertisement

Log in

Endogenous and exogenous protection from surgically induced reactive oxygen and nitrogen species

  • Review Article
  • Published:
Surgery Today Aims and scope Submit manuscript

Abstract

Surgical intervention creates reactive oxygen species through diverse molecular mechanisms, including direct stimulation of immune-mediated inflammation necessary for wound healing. However, dysregulation of redox homeostasis in surgical patients overwhelms the endogenous defense system, slowing the healing process and damaging organs. We broadly surveyed reactive oxygen species that result from surgical interventions and the endogenous and/or exogenous antioxidants that control them. This study assimilates current reports on surgical sources of reactive oxygen and nitrogen species along with literature reports on the effects of endogenous and exogenous antioxidants in human, animal, and clinical settings. Although exogenous antioxidants are generally beneficial, endogenous antioxidant systems account for over 80% of total activity, varying based on patient age, sex, and health or co-morbidity status, especially in smokers, the diabetic, and the obese. Supplementation of exogenous compounds for support in surgical patients is thus theoretically beneficial, but a lack of persuasive clinical evidence has left this potential patient support strategy without clear guidelines. A more thorough understanding of the mechanisms of exogenous antioxidants in patients with compromised health statuses and pharmacokinetic profiling may increase the utility of such support in both the operating and recovery rooms.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig.1
Fig. 2
Fig. 3

Similar content being viewed by others

Data availability

Data on reported clinical trials are available from clinicaltrials.gov or their respective publications. No new, unreported datasets were used.

References

  1. Di Meo S, Reed TT, Venditti P, Victor VM. Role of ROS and RNS sources in physiological and pathological conditions. Oxid Med Cell Longev. 2016;2016:1245049. https://doi.org/10.1155/2016/1245049.

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  2. Sauer H, Wartenberg M, Hescheler J. Reactive oxygen species as intracellular messengers during cell growth and differentiation. Int J Exp Cell Physiol Biochem Pharmacol. 2001;11(4):173–86. https://doi.org/10.1159/000047804.

    Article  CAS  Google Scholar 

  3. Haschka D, Hoffmann A, Weiss G. Iron in immune cell function and host defense. Semin Cell Dev Biol. 2021;115:27–36. https://doi.org/10.1016/j.semcdb.2020.12.005.

    Article  PubMed  CAS  Google Scholar 

  4. Radi R. Oxygen radicals, nitric oxide, and peroxynitrite: Redox pathways in molecular medicine. Proc Natl Acad Sci. 2018;115(23):5839–48. https://doi.org/10.1073/pnas.1804932115.

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  5. Patel RP, McAndrew J, Sellak H, White CR, Jo H, Freeman BA, et al. Biological aspects of reactive nitrogen species. Biochim Biophys Acta - Bioenerg. 1999;1411(2–3):385–400. https://doi.org/10.1016/S0005-2728(99)00028-6.

    Article  CAS  Google Scholar 

  6. Barrett CD, Hsu AT, Ellson CD, Miyazawa Y, et al. Blood clotting and traumatic injury with shock mediates complement-dependent neutrophil priming for extracellular ROS, ROS-dependent organ injury and coagulopathy. Clin Exp Immunol. 2018;194(1):103–17.

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  7. Fan J, Li Y, Levy RM, Fan JJ, Hackam DJ, Vodovotz Y, et al. Hemorrhagic shock induces NAD(P)H oxidase activation in neutrophils: role of HMGB1-TLR4 signaling. J Immunol. 2007;178(10):6573–80. https://doi.org/10.4049/jimmunol.178.10.6573.

    Article  PubMed  CAS  Google Scholar 

  8. Dunnill C, Patton T, Brennan J, Barrett J, Dryden M, Cooke J, et al. Reactive oxygen species (ROS) and wound healing: the functional role of ROS and emerging ROS-modulating technologies for augmentation of the healing process. Int Wound J. 2017;14(1):89–96. https://doi.org/10.1111/iwj.12557.

    Article  PubMed  Google Scholar 

  9. Liu R-M, Desai LP. Reciprocal regulation of TGF-β and reactive oxygen species: a perverse cycle for fibrosis. Redox Biol. 2015;6:565–77. https://doi.org/10.1016/j.redox.2015.09.009.

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  10. Arfmann-Knübel S, Struck B, Genrich G, Helm O, Sipos B, Sebens S, et al. The Crosstalk between Nrf2 and TGF-β1 in the epithelial-mesenchymal transition of pancreatic duct epithelial cells. PLoS ONE. 2015;10(7): e0132978. https://doi.org/10.1371/journal.pone.0132978.

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  11. Bozkurt M, Sezgic M, Karakol P, Uslu C, Balikci T. (2019) The Effect of antioxidants on ischemia-reperfusion injury in flap surgery in: antioxidants. IntechOpen https://doi.org/10.5772/intechopen.85500

  12. Arifa RDN, Madeira MFM, de Paula TP, Lima RL, Tavares LD, Menezes-Garcia Z, et al. Inflammasome activation is reactive oxygen species dependent and mediates irinotecan-induced mucositis through IL-1β and IL-18 in mice. Am J Pathol. 2014;184(7):2023–34. https://doi.org/10.1016/j.ajpath.2014.03.012.

    Article  PubMed  CAS  Google Scholar 

  13. Korkmaz HI, Ulrich MMW, Çelik G, Van Wieringen WN, Van Zuijlen PPM, Krijnen PAJ, et al. NOX2 expression is increased in keratinocytes after burn injury. J Burn Care Res. 2020;41(2):427–32. https://doi.org/10.1093/jbcr/irz162.

    Article  PubMed  Google Scholar 

  14. Alva N, Palomeque J, Carbonell T. oxidative stress and antioxidant activity in hypothermia and rewarming: Can RONS modulate the beneficial effects of therapeutic hypothermia? Oxid Med Cell Longev. 2013;2013:1–10. https://doi.org/10.1155/2013/957054.

    Article  CAS  Google Scholar 

  15. Luyten C, Vanoverveld F, DebackerR L, Sadowska A, Rodrigus I, Dehert S, et al. Antioxidant defence during cardiopulmonary bypass surgery. Eur J Cardio-Thoracic Surg. 2005;27(4):611–6. https://doi.org/10.1016/j.ejcts.2004.12.013.

    Article  Google Scholar 

  16. Raffaeli G, Ghirardello S, Passera S, Mosca F, Cavallaro G. Oxidative stress and neonatal respiratory extracorporeal membrane oxygenation. Front Physiol. 2018;9:1739. https://doi.org/10.3389/fphys.2018.01739.

    Article  PubMed  PubMed Central  Google Scholar 

  17. Mittal M, Siddiqui MR, Tran K, Reddy SP, Malik AB. Reactive oxygen species in inflammation and tissue injury. Antioxidants Redox Signal. 2014;20(7):1126–67. https://doi.org/10.1089/ars.2012.5149.

    Article  CAS  Google Scholar 

  18. Millar JE, Fanning JP, McDonald CI, McAuley DF, Fraser JF. The inflammatory response to extracorporeal membrane oxygenation (ECMO): a review of the pathophysiology. Crit Care. 2016;20(1):1–10. https://doi.org/10.1186/s13054-016-1570-4.

    Article  Google Scholar 

  19. McVey MJ, Kuebler WM. Extracellular vesicles: biomarkers and regulators of vascular function during extracorporeal circulation. Oncotarget. 2018;9(98):37229–51.

    Article  PubMed  PubMed Central  Google Scholar 

  20. Yoshimura Y, Hiramatsu Y, Sato Y. Inhibitor, reduces inflammatory mediators during. Ann Thorac Surg. 2003;4975(03):1234–9.

    Article  Google Scholar 

  21. Kaminishi Y, Hiramatsu Y, Watanabe Y, Yoshimura Y, Sakakibara Y. Effects of nafamostat mesilate and minimal-dose aprotinin on blood-foreign surface interactions in cardiopulmonary bypass. Ann Thorac Surg. 2004;77(2):644–50. https://doi.org/10.1016/S0003-4975(03)01513-3.

    Article  PubMed  Google Scholar 

  22. Matsuzaki K, Hiramatsu Y, Homma S, Sato S, Shigeta O, Sakakibara Y. Sivelestat reduces inflammatory mediators and preserves neutrophil deformability during simulated extracorporeal circulation. Ann Thorac Surg. 2005;80(2):611–7. https://doi.org/10.1016/j.athoracsur.2005.02.038.

    Article  PubMed  Google Scholar 

  23. Hendriks KDW, Brüggenwirth IMA, Maassen H, Gerding A, Bakker B, Porte RJ, et al. Renal temperature reduction progressively favors mitochondrial ROS production over respiration in hypothermic kidney preservation. J Transl Med. 2019;17(1):265. https://doi.org/10.1186/s12967-019-2013-1.

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  24. Chapman KE, Sinclair SE, Zhuang D, Hassid A, Desai LP, Waters CM. Cyclic mechanical strain increases reactive oxygen species production in pulmonary epithelial cells. Am J Physiol Cell Mol Physiol. 2005;289(5):L834–41. https://doi.org/10.1152/ajplung.00069.2005.

    Article  CAS  Google Scholar 

  25. Pannu SR, Dziadzko MA, Gajic O. How much oxygen? oxygen titration goals during mechanical ventilation. Am J Respir Crit Care Med. 2016;193(1):4–5. https://doi.org/10.1164/rccm.201509-1810ED.

    Article  PubMed  CAS  Google Scholar 

  26. Boisramé-Helms J, Radermacher P, Asfar P. Cardiac surgery, a right target for hyperoxia? Crit Care. 2016;20(1):162. https://doi.org/10.1186/s13054-016-1347-9.

    Article  PubMed  PubMed Central  Google Scholar 

  27. Young RW. Hyperoxia: a review of the risks and benefits in adult cardiac surgery. J Extra Corpor Technol. 2012;44(4):241–9.

    Article  PubMed  PubMed Central  Google Scholar 

  28. An X, Sun X, Yang X, Liu D, Hou Y, Chen H, et al. Oxidative stress promotes ventilator-induced lung injury through activating NLRP3 inflammasome and TRPM2 channel. Artif Cells, Nanomedicine, Biotechnol. 2019;47(1):3448–55. https://doi.org/10.1080/21691401.2019.1652631.

    Article  CAS  Google Scholar 

  29. Resseguie EA, Staversky RJ, Brookes PS, O’Reilly MA. Hyperoxia activates ATM independent from mitochondrial ROS and dysfunction. Redox Biol. 2015;5:176–85. https://doi.org/10.1016/j.redox.2015.04.012.

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  30. Curley GF, Laffey JG, Zhang H, Slutsky AS. Biotrauma and ventilator-induced lung injury: clinical implications. Chest. 2016;150(5):1109–17. https://doi.org/10.1016/j.chest.2016.07.019.

    Article  PubMed  Google Scholar 

  31. van Hezel ME, Boshuizen M, Peters AL, Straat M, Vlaar AP, Spoelstra-de Man AME, et al. Red blood cell transfusion results in adhesion of neutrophils in human endotoxemia and in critically ill patients with sepsis. Transfusion. 2020;60(2):294–302. https://doi.org/10.1111/trf.15613.

    Article  PubMed  CAS  Google Scholar 

  32. Biswal S, Remick DG. Sepsis: redox mechanisms and therapeutic opportunities. Antioxid Redox Signal. 2007;9(11):1959–61. https://doi.org/10.1089/ars.2007.1808.

    Article  PubMed  CAS  Google Scholar 

  33. Tonelli C, Chio IIC, Tuveson DA. Transcriptional regulation by Nrf2. Antioxid Redox Signal. 2018;29(17):1727–45. https://doi.org/10.1089/ars.2017.7342.

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  34. Kudoh K, Uchinami H, Yoshioka M, Seki E, Yamamoto Y. Nrf2 activation protects the liver from ischemia/reperfusion injury in mice. Ann Surg. 2014;260(1):118–27. https://doi.org/10.1097/SLA.0000000000000287.

    Article  PubMed  Google Scholar 

  35. Mathis BJ, Lai Y, Qu C, Janicki JS, Cui T. CYLD-mediated signaling and diseases. Curr Drug Targets. 2015;16(4):284–94.

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  36. Fudulu D, Angelini G. Oxidative stress after surgery on the immature heart. Oxid Med Cell Longev. 2016;2016:1–10. https://doi.org/10.1155/2016/1971452.

    Article  CAS  Google Scholar 

  37. Kratschmar DV, Calabrese D, Walsh J, Lister A, Birk J, Appenzeller-Herzog C, et al. Suppression of the Nrf2-dependent antioxidant response by glucocorticoids and 11β-HSD1-mediated glucocorticoid activation in hepatic cells. PLoS ONE. 2012;7(5): e36774. https://doi.org/10.1371/journal.pone.0036774.

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  38. Ulrich K, Jakob U. The role of thiols in antioxidant systems. Free Radic Biol Med. 2019;140:14–27. https://doi.org/10.1016/j.freeradbiomed.2019.05.035.

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  39. Prenesti E, Berto S, Gosmaro F, Bagnati M, Bellomo G. Biomolecules responsible for the total antioxidant capacity (Tac) of human plasma in healthy and cardiopathic individuals: a chemical speciation model. Antioxidants. 2021;10(5):665.

    Article  Google Scholar 

  40. Kerksick C, Willoughby D. The antioxidant role of glutathione and n-acetyl-cysteine supplements and exercise-induced oxidative stress. J Int Soc Sports Nutr. 2005;2(2):38. https://doi.org/10.1186/1550-2783-2-2-38.

    Article  PubMed  PubMed Central  Google Scholar 

  41. Tram NK, McLean RM, Swindle-Reilly KE. glutathione improves the antioxidant activity of Vitamin C in human lens and retinal epithelial cells: implications for vitreous substitutes. Curr Eye Res. 2021;46(4):470–81. https://doi.org/10.1080/02713683.2020.1809002.

    Article  PubMed  CAS  Google Scholar 

  42. Pizzorno J. Glutathione! Integr Med (Encinitas). 2014;13(1):8–12.

    PubMed  Google Scholar 

  43. Mooradian AD. Antioxidant properties of steroids. J Steroid Biochem Mol Biol. 1993;45(6):509–11. https://doi.org/10.1016/0960-0760(93)90166-t.

    Article  PubMed  CAS  Google Scholar 

  44. Borrás C, Gambini J, López-Grueso R, Pallardó FV, Viña J. Direct antioxidant and protective effect of estradiol on isolated mitochondria. Biochim Biophys Acta - Mol Basis Dis. 2010;1802(1):205–11. https://doi.org/10.1016/j.bbadis.2009.09.007.

    Article  CAS  Google Scholar 

  45. Fabbrini E, Serafini M, Colic Baric I, Hazen SL, Klein S. Effect of plasma uric acid on antioxidant capacity, oxidative stress, and insulin sensitivity in obese subjects. Diabetes. 2014;63(3):976–81. https://doi.org/10.2337/db13-1396.

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  46. Fernandez ML, Upton Z, Shooter GK. Uric acid and xanthine oxidoreductase in wound healing. Curr Rheumatol Rep. 2014;16(2):396. https://doi.org/10.1007/s11926-013-0396-1.

    Article  PubMed  CAS  Google Scholar 

  47. Li H, Qian F, Liu H, Zhang Z. Elevated uric acid levels promote vascular smooth muscle cells (VSMC) Proliferation via an Nod-like receptor protein 3 (NLRP3)-inflammasome-dependent mechanism. Med Sci Monit. 2019;25:8457–64.

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  48. Sautin YY, Nakagawa T, Zharikov S, Johnson RJ. Adverse effects of the classic antioxidant uric acid in adipocytes: NADPH oxidase-mediated oxidative/nitrosative stress. Am J Physiol Physiol. 2007;293(2):C584–96. https://doi.org/10.1152/ajpcell.00600.2006.

    Article  CAS  Google Scholar 

  49. Palace VP, Khaper N, Qin Q, Singal PK. Antioxidant potentials of vitamin A and carotenoids and their relevance to heart disease. Free Radic Biol Med. 1999;26(5–6):746–61. https://doi.org/10.1016/s0891-5849(98)00266-4.

    Article  PubMed  CAS  Google Scholar 

  50. Polcz ME, Barbul A. The role of Vitamin A in wound healing. Nutr Clin Pract. 2019;34(5):695–700. https://doi.org/10.1002/ncp.10376.

    Article  PubMed  CAS  Google Scholar 

  51. Chae T, Foroozan R. Vitamin A deficiency in patients with a remote history of intestinal surgery. Br J Ophthalmol. 2006;90(8):955–6. https://doi.org/10.1136/bjo.2006.092502.

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  52. Hornung TC, Biesalski H-K. Glut-1 explains the evolutionary advantage of the loss of endogenous vitamin C-synthesis. Evol Med Public Heal. 2019;2019(1):221–31. https://doi.org/10.1093/emph/eoz024.

    Article  Google Scholar 

  53. Yamazaki E, Horikawa M, Fukushima R. Vitamin C supplementation in patients receiving peripheral parenteral nutrition after gastrointestinal surgery. Nutrition. 2011;27(4):435–9. https://doi.org/10.1016/j.nut.2010.02.015.

    Article  PubMed  CAS  Google Scholar 

  54. Wang Y, Lin H, Lin B-W, Lin J-D. Effects of different ascorbic acid doses on the mortality of critically ill patients: a meta-analysis. Ann Intensive Care. 2019;9(1):58. https://doi.org/10.1186/s13613-019-0532-9.

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  55. Wiseman H. Vitamin D is a membrane antioxidant ability to inhibit iron-dependent lipid peroxidation in liposomes compared to cholesterol ergosterol and tamoxifen and relevance to anticancer action. FEBS Lett. 1993;326(1–3):285–8.

    Article  PubMed  CAS  Google Scholar 

  56. Tagliaferri S, Porri D, De Giuseppe R, Manuelli M, Alessio F, Cena H. The controversial role of vitamin D as an antioxidant: results from randomised controlled trials. Nutr Res Rev. 2019;32(1):99–105. https://doi.org/10.1017/S0954422418000197.

    Article  PubMed  CAS  Google Scholar 

  57. Dzik K, Skrobot W, Flis DJ, Karnia M, Libionka W, Kloc W, et al. Vitamin D supplementation attenuates oxidative stress in paraspinal skeletal muscles in patients with low back pain. Eur J Appl Physiol. 2018;118(1):143–51. https://doi.org/10.1007/s00421-017-3755-1.

    Article  PubMed  CAS  Google Scholar 

  58. Kim HA, Perrelli A, Ragni A, Retta F, De Silva TM, Sobey CG, et al. Vitamin D deficiency and the risk of cerebrovascular disease. Antioxidants. 2020;9(4):327. https://doi.org/10.3390/antiox9040327.

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  59. Mène-Saffrané L. Vitamin E biosynthesis and its regulation in plants. Antioxidants (Basel, Switzerland). 2017;7(1):2.

    PubMed  Google Scholar 

  60. Burton GW, Hughes L, Foster DO, Pietrzak E, Goss-Samson MA, Muller DPR. (1993) antioxidant mechanisms of vitamin E and β-carotene. In: free radicals: from basic science to medicine Basel: Birkhäuser Basel https://doi.org/10.1007/978-3-0348-9116-5_33

  61. Lee SR. Critical role of zinc as either an antioxidant or a prooxidant in cellular systems. Oxid Med Cell Longev. 2018;2018:1–11. https://doi.org/10.1155/2018/9156285.

    Article  CAS  Google Scholar 

  62. Lansdown ABG, Mirastschijski U, Stubbs N, Scanlon E, Agren MS. Zinc in wound healing: theoretical, experimental, and clinical aspects. Wound Repair Regen. 2007;15(1):2–16. https://doi.org/10.1111/j.1524-475X.2006.00179.x.

    Article  PubMed  Google Scholar 

  63. Sangsefidi ZS, Yaghoubi F, Hajiahmadi S, Hosseinzadeh M. The effect of coenzyme Q10 supplementation on oxidative stress: a systematic review and meta-analysis of randomized controlled clinical trials. Food Sci Nutr. 2020;8(4):1766–76. https://doi.org/10.1002/fsn3.1492.

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  64. Saini R. Coenzyme Q10: the essential nutrient. J Pharm Bioallied Sci. 2011;3(3):466–7. https://doi.org/10.4103/0975-7406.84471.

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  65. Turunen M, Olsson J, Dallner G. Metabolism and function of coenzyme Q. Biochim Biophys Acta - Biomembr. 2004;1660(1–2):171–99. https://doi.org/10.1016/j.bbamem.2003.11.012.

    Article  CAS  Google Scholar 

  66. Choi BS, Song HS, Kim HR, Park TW, Kim TD, Cho BJ, et al. Effect of coenzyme Q10 on cutaneous healing in skin-incised mice. Arch Pharm Res. 2009;32(6):907–13. https://doi.org/10.1007/s12272-009-1613-3.

    Article  PubMed  CAS  Google Scholar 

  67. Mao Z, Wu JH, Dong T, Wu MX. Additive enhancement of wound healing in diabetic mice by low level light and topical CoQ10. Sci Rep. 2016;6(1):20084. https://doi.org/10.1038/srep20084.

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  68. de Frutos F, Gea A, Hernandez-Estefania R, Rabago G. Prophylactic treatment with coenzyme Q10 in patients undergoing cardiac surgery: could an antioxidant reduce complications? a systematic review and meta-analysis. Interact Cardiovasc Thorac Surg. 2015;20(2):254–9. https://doi.org/10.1093/icvts/ivu334.

    Article  PubMed  Google Scholar 

  69. Scott BC, Aruoma OI, Evans PJ, O’Neill C, Van der Vliet A, Cross CE, et al. Lipoic and dihydrolipoic acids as antioxidants. A critical evaluation Free Radic Res. 1994;20(2):119–33. https://doi.org/10.3109/10715769409147509.

    Article  PubMed  CAS  Google Scholar 

  70. Salehi B, Berkay Yılmaz Y, Antika G, Boyunegmez Tumer T, Fawzi Mahomoodally M, Lobine D, et al. Insights on the use of α-lipoic acid for therapeutic purposes. Biomolecules. 2019. https://doi.org/10.3390/biom9080356.

    Article  PubMed  PubMed Central  Google Scholar 

  71. Nasole E, Nicoletti C, Yang Z-J, Girelli A, Rubini A, Giuffreda F, et al. Effects of alpha lipoic acid and its R+ enantiomer supplemented to hyperbaric oxygen therapy on interleukin-6, TNF- α and EGF production in chronic leg wound healing. J Enzyme Inhib Med Chem. 2014;29(2):297–302. https://doi.org/10.3109/14756366.2012.759951.

    Article  PubMed  CAS  Google Scholar 

  72. Sammour H, Elkholy A, Rasheedy R, Fadel E. The effect of alpha lipoic acid on uterine wound healing after primary cesarean section: a triple-blind placebo-controlled parallel-group randomized clinical trial. Arch Gynecol Obstet. 2019;299(3):665–73. https://doi.org/10.1007/s00404-018-5011-2.

    Article  PubMed  CAS  Google Scholar 

  73. Deng L, Du C, Song P, Chen T, Rui S, Armstrong DG, et al. (2021) The role of oxidative stress and antioxidants in diabetic wound healing. Ciobica A, editor. Oxid Med Cell Longev.https://doi.org/10.1155/2021/8852759

  74. Baell J, Walters MA. Chemistry: chemical con artists foil drug discovery. Nature. 2014;513(7519):481–3. https://doi.org/10.1038/513481a.

    Article  PubMed  CAS  Google Scholar 

  75. Shaito A, Posadino AM, Younes N, Hasan H, Halabi S, Alhababi D, et al. potential adverse effects of resveratrol: a literature review. Int J Mol Sci. 2020. https://doi.org/10.3390/ijms21062084.

    Article  PubMed  PubMed Central  Google Scholar 

  76. Sergides C, Chirilă M, Silvestro L, Pitta D, Pittas A. Bioavailability and safety study of resveratrol 500 mg tablets in healthy male and female volunteers. Exp Ther Med. 2016;11(1):164–70. https://doi.org/10.3892/etm.2015.2895.

    Article  PubMed  CAS  Google Scholar 

  77. Hewlings SJ, Kalman DS. Curcumin: A Review of Its Effects on Human Health. Foods (Basel, Switzerland). 2017;6(10). DOI: https://doi.org/10.3390/foods6100092

  78. Lee Y-C, Chuah AM, Yamaguchi T, Takamura H, Matoba T. Antioxidant activity of traditional chinese medicinal herbs. Food Sci Technol Res. 2008;14(2):205–10. https://doi.org/10.3136/fstr.14.205.

    Article  CAS  Google Scholar 

  79. Sahinovic MM, Struys MMRF, Absalom AR. Clinical pharmacokinetics and pharmacodynamics of propofol. Clin Pharmacokinet. 2018;57(12):1539–58. https://doi.org/10.1007/s40262-018-0672-3.

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  80. Roh GU, Song Y, Park J, Ki YM, Han DW. Effects of propofol on the inflammatory response during robot-assisted laparoscopic radical prostatectomy: a prospective randomized controlled study. Sci Rep. 2019;9(1):5242. https://doi.org/10.1038/s41598-019-41708-x.

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  81. Hummel SG, Fischer AJ, Martin SM, Schafer FQ, Buettner GR. Nitric oxide as a cellular antioxidant: a little goes a long way. Free Radic Biol Med. 2006;40(3):501–6. https://doi.org/10.1016/j.freeradbiomed.2005.08.047.

    Article  PubMed  CAS  Google Scholar 

  82. Davis JL, Paris HL, Beals JW, Binns SE, Giordano GR, Scalzo RL, et al. Liposomal-encapsulated ascorbic acid: influence on vitamin c bioavailability and capacity to protect against ischemia-reperfusion injury. Nutr Metab Insights. 2016. https://doi.org/10.4137/nmi.s39764.

    Article  PubMed  PubMed Central  Google Scholar 

  83. May JM, Qu Z, Neel DR, Li X. Recycling of vitamin C from its oxidized forms by human endothelial cells. Biochim Biophys Acta - Mol Cell Res. 2003;1640(2–3):153–61. https://doi.org/10.1016/S0167-4889(03)00043-0.

    Article  CAS  Google Scholar 

  84. Ait-Oudhia S, Mager DE, Straubinger RM. Application of pharmacokinetic and pharmacodynamic analysis to the development of liposomal formulations for oncology. Pharmaceutics. 2014;6(1):137–74. https://doi.org/10.3390/pharmaceutics6010137.

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  85. Ingold KU, Webb AC, Witter D, Burton GW, Metcalfe TA, Muller DP. Vitamin E remains the major lipid-soluble, chain-breaking antioxidant in human plasma even in individuals suffering severe vitamin E deficiency. Arch Biochem Biophys. 1987;259(1):224–5. https://doi.org/10.1016/0003-9861(87)90489-9.

    Article  PubMed  CAS  Google Scholar 

  86. Bast A, Haenen GRMM. The toxicity of antioxidants and their metabolites. Environ Toxicol Pharmacol. 2002;11(3–4):251–8. https://doi.org/10.1016/s1382-6689(01)00118-1.

    Article  PubMed  CAS  Google Scholar 

  87. Salehi B, Martorell M, Arbiser JL, Sureda A, Martins N, Maurya PK, et al. Antioxidants: positive or negative actors? Biomolecules. 2018. https://doi.org/10.3390/biom8040124.

    Article  PubMed  PubMed Central  Google Scholar 

  88. Geng J, Qian J, Si W, Cheng H, Ji F, Shen Z. The clinical benefits of perioperative antioxidant vitamin therapy in patients undergoing cardiac surgery: a meta-analysis. Interact Cardiovasc Thorac Surg. 2017;25(6):966–74. https://doi.org/10.1093/icvts/ivx178.

    Article  PubMed  Google Scholar 

  89. Pedersen SS, Fabritius ML, Kongebro EK, Meyhoff CS. Antioxidant treatment to reduce mortality and serious adverse events in adult surgical patients: a systematic review with meta-analysis and trial sequential analysis. Acta Anaesthesiol Scand. 2021;65(4):438–50. https://doi.org/10.1111/aas.13752.

    Article  PubMed  CAS  Google Scholar 

  90. de Zeeuw D, Akizawa T, Audhya P, Bakris GL, Chin M, Christ-Schmidt H, et al. Bardoxolone methyl in type 2 diabetes and stage 4 chronic kidney disease. N Engl J Med. 2013;369(26):2492–503. https://doi.org/10.1056/NEJMoa1306033.

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  91. Mathis BJ, Cui T. CDDO and Its role in chronic diseases. Adv Exp Med Biol. 2016;929:291–314. https://doi.org/10.1007/978-3-319-41342-6_13.

    Article  PubMed  CAS  Google Scholar 

  92. Pereira JEG, El Dib R, Braz LG, Escudero J, Hayes J, Johnston BC. (2019) N-acetylcysteine use among patients undergoing cardiac surgery: a systematic review and meta-analysis of randomized trials. Wright JM, editor. PLoS One. 14(5) e0213862.

  93. Ali-Hassan-Sayegh S, Mirhosseini SJ, Rezaeisadrabadi M, Dehghan HR, Sedaghat-Hamedani F, Kayvanpour E, et al. Antioxidant supplementations for prevention of atrial fibrillation after cardiac surgery: an updated comprehensive systematic review and meta-analysis of 23 randomized controlled trials. Interact Cardiovasc Thorac Surg. 2014;18(5):646–54. https://doi.org/10.1093/icvts/ivu020.

    Article  PubMed  Google Scholar 

  94. Castillo R, Rodrigo R, Perez F, Cereceda M, Asenjo R, Zamorano J, et al. Antioxidant therapy reduces oxidative and inflammatory tissue damage in patients subjected to cardiac surgery with extracorporeal circulation. Basic Clin Pharmacol Toxicol. 2011;108(4):256–62. https://doi.org/10.1111/j.1742-7843.2010.00651.x.

    Article  PubMed  CAS  Google Scholar 

  95. Cerit L, Özcem B, Cerit Z, Duygu H. Preventive effect of preoperative vitamin D supplementation on postoperative atrial fibrillation. Brazilian J Cardiovasc Surg. 2018;33(4):347–52.

    Article  Google Scholar 

  96. Checchia PA, Bronicki RA, Muenzer JT, Dixon D, Raithel S, Gandhi SK, et al. Nitric oxide delivery during cardiopulmonary bypass reduces postoperative morbidity in children–a randomized trial. J Thorac Cardiovasc Surg. 2013;146(3):530–6. https://doi.org/10.1016/j.jtcvs.2012.09.100.

    Article  PubMed  CAS  Google Scholar 

  97. El HM, Bondok R, Shaheen S, Eladly GH. Safety and efficacy of adding intravenous N-acetylcysteine to parenteral L-alanyl-L-glutamine in hospitalized patients undergoing surgery of the colon: a randomized controlled trial. Ann Saudi Med. 2019;39(4):251–7. https://doi.org/10.5144/0256-4947.2019.251.

    Article  Google Scholar 

  98. Emadi N, Nemati MH, Ghorbani M, Allahyari E. (2019) The Effect of High-Dose Vitamin C on biochemical markers of myocardial injury in coronary artery bypass surgery. Brazilian J Cardiovasc Surg https://doi.org/10.21470/1678-9741-2018-0312

  99. Erdil N, Eroglu T, Akca B, Disli OM, Yetkin O, Colak MC, et al. The effects of N-acetylcysteine on pulmonary functions in patients undergoing on-pump coronary artery surgery: a double blind placebo controlled study. Eur Rev Med Pharmacol Sci. 2016;20(1):180–7.

    PubMed  CAS  Google Scholar 

  100. Garg AX, Devereaux PJ, Hill A, Sood M, Aggarwal B, Dubois L, et al. Oral curcumin in elective abdominal aortic aneurysm repair: a multicentre randomized controlled trial. C Can Med. 2018;190(43):E1273-80. https://doi.org/10.1503/cmaj.180510.

    Article  Google Scholar 

  101. Kamenshchikov NO, Mandel IA, Podoksenov YK, Svirko YS, Lomivorotov VV, Mikheev SL, et al. Nitric oxide provides myocardial protection when added to the cardiopulmonary bypass circuit during cardiac surgery: randomized trial. J Thorac Cardiovasc Surg. 2019;157(6):2328-2336.e1. https://doi.org/10.1016/j.jtcvs.2018.08.117.

    Article  PubMed  CAS  Google Scholar 

  102. Lang JDJ, Smith AB, Brandon A, Bradley KM, Liu Y, Li W, et al. A randomized clinical trial testing the anti-inflammatory effects of preemptive inhaled nitric oxide in human liver transplantation. PLoS ONE. 2014;9(2): e86053. https://doi.org/10.1371/journal.pone.0086053.

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  103. Li X, Wei X, Chen C, Zhang Z, Liu D, Hei Z, et al. N-Acetylcysteine inhalation improves pulmonary function in patients received liver transplantation. Biosci Rep. 2018 Oct;38(5). DOI: https://doi.org/10.1042/BSR20180858

  104. Mizutani T, Yokoyama Y, Kokuryo T, Ebata T, Igami T, Sugawara G, et al. Does inchinkoto, a herbal medicine, have hepatoprotective effects in major hepatectomy? A prospective randomized study HPB. 2015;17(5):461–9. https://doi.org/10.1111/hpb.12384.

    Article  Google Scholar 

  105. Soleimani A, Habibi MR, Hasanzadeh Kiabi F, Alipour A, Habibi V, Azizi S, et al. The effect of intravenous N-acetylcysteine on prevention of atrial fibrillation after coronary artery bypass graft surgery: a double-blind, randomised, placebo-controlled trial. Kardiol Pol. 2018;76(1):99–106. https://doi.org/10.5603/KP.a2017.0183.

    Article  PubMed  Google Scholar 

  106. Wang D, Wang M, Zhang H, Zhu H, Zhang N, Liu J. Effect of Intravenous injection of vitamin c on postoperative pulmonary complications in patients undergoing cardiac surgery: a double-blind. Randomized Trial Drug Des Devel Ther. 2020;14:3263–70. https://doi.org/10.2147/DDDT.S254150.

    Article  PubMed  Google Scholar 

  107. Zhang L, Wang C-B, Li B, Lin D-M, Ma J. RhoA/rho-kinase, nitric oxide and inflammatory response in LIMA during OPCABG with isoflurane preconditioning. J Cardiothorac Surg. 2019;14(1):22. https://doi.org/10.1186/s13019-019-0835-9.

    Article  PubMed  PubMed Central  Google Scholar 

  108. Zhang L, Liu W, You H, Chen Z, Xu L, He H. Assessing the analgesic efficacy of oral epigallocatechin-3-gallate on epidural catheter analgesia in patients after surgical stabilisation of multiple rib fractures: a prospective double-blind, placebo-controlled clinical trial. Pharm Biol. 2020;58(1):741–4. https://doi.org/10.1080/13880209.2020.1797123.

    Article  PubMed  PubMed Central  CAS  Google Scholar 

Download references

Funding

This research did not receive any specific grant from funding agencies in the public, commercial, or not-for-profit sectors.

Author information

Authors and Affiliations

Authors

Contributions

Conceptualization, B.J.M, H.K., Y.M., and Y.H; writing—original draft preparation and figures, B.J.M.; writing—review and editing, B.J.M, H.K., Y.M., and Y.H.; supervision, H.K and Y.H. Cross-checking, Y.M. All authors have read and agreed to the published version of the manuscript.

Corresponding author

Correspondence to Bryan J. Mathis.

Ethics declarations

Conflict of interest

The authors declare no conflict of interest.

Ethical approval

Not applicable due to the review-only nature of the manuscript.

Informed consent

This review reported only previously published results; as such, informed consent is not applicable. All reported studies involving humans that were used in this review were confirmed to have informed consent statements, and animal studies were confirmed to have ethical approval.

Additional information

Publisher's Note

Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Rights and permissions

Springer Nature or its licensor (e.g. a society or other partner) holds exclusive rights to this article under a publishing agreement with the author(s) or other rightsholder(s); author self-archiving of the accepted manuscript version of this article is solely governed by the terms of such publishing agreement and applicable law.

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Mathis, B.J., Kato, H., Matsuishi, Y. et al. Endogenous and exogenous protection from surgically induced reactive oxygen and nitrogen species. Surg Today 54, 1–13 (2024). https://doi.org/10.1007/s00595-022-02612-6

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s00595-022-02612-6

Keywords

Navigation