Skip to main content

Advertisement

Log in

Peritoneal lavage with hydrogen-rich saline can be an effective and practical procedure for acute peritonitis

  • Original Article
  • Published:
Surgery Today Aims and scope Submit manuscript

Abstract

Purpose

Acute peritonitis has remained a fatal disease despite of recent advances in care and treatment, including antibiotic and anticoagulant treatments. The cause of death is mostly sepsis-induced multiple organ failure. Oxidative stress can play an important role in this situation, but antioxidant therapy to capture any excessive reactive oxygen species has not yet been fully established.

Methods

Two experiments were performed. In the first experiment, we confirmed the effects of peritoneal lavage with hydrogen-rich saline (HRS) after a cecal ligation and puncture (CLP) operation in rats. In the second experiment, the changes in the hemodynamic state following this procedure were observed in a porcine model of abdominal sepsis to evaluate its safety and utility.

Results

Peritoneal lavage with HRS significantly improved the survival after CLP in rats, and it ameliorated the levels of sepsis-induced organ failure. Moreover, it showed anti-inflammatory and anti-apoptosis as well as antioxidant effects. The second experiment demonstrated the potential safety and feasibility of this procedure in a large animal model.

Conclusion

This procedure can improve survival after sepsis through mitigating the sepsis-induced organ failure by inhibiting oxidative stress, apoptosis, and inflammatory pathways. Peritoneal lavage with HRS may therefore be an effective, safe, and practical therapy for patients with acute peritonitis.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6
Fig. 7
Fig. 8
Fig. 9
Fig. 10
Fig. 11
Fig. 12

Similar content being viewed by others

References

  1. Sartelli M, Abu-Zidan FM, Catena F, Griffiths EA, Di Saverio S, Coimbra R, et al. Global validation of the WSES sepsis severity score for patients with complicated intra-abdominal infections: a prospective multicentre study (WISS Study). World J Emerg Surg. 2015;10:61.

    Article  PubMed  PubMed Central  Google Scholar 

  2. Martin GS, Mannino DM, Eaton S, Moss M. The epidemiology of sepsis in the United States from 1979 through 2000. N Engl J Med. 2003;348:1546–54.

    Article  PubMed  Google Scholar 

  3. Brealey D, Karyampudi S, Jacques TS, Novelli M, Stidwill R, Taylor V, et al. Mitochondrial dysfunction in a long-term rodent model of sepsis and organ failure. Am J Physiol Integr Comp Physiol. 2004;286:R491–7.

    Article  CAS  Google Scholar 

  4. Ince C, Sinaasappel M. Microcirculatory oxygenation and shunting in sepsis and shock. Crit Care Med. 1999;27:1369–77.

    Article  CAS  PubMed  Google Scholar 

  5. American College of Chest Physicians/Society of Critical Care Medicine Consensus Conference. definitions for sepsis and organ failure and guidelines for the use of innovative therapies in sepsis. Crit Care Med. 1992;20:864–74.

    Article  Google Scholar 

  6. Zheng GJ, Sun Q, Li YP. Inflammation, endothelium, coagulation in sepsis. Chin Crit Care Med. 2009;21:573–6.

    CAS  Google Scholar 

  7. Nimah M, Brilli RJ. Coagulation dysfunction in sepsis and multiple organ system failure. Crit Care Clin. 2003;19:441–58.

    Article  PubMed  Google Scholar 

  8. Niederwanger C, Hell T, Hofer S, Salvador C, Michel M, Schenk B, et al. Antithrombin deficiency is associated with mortality and impaired organ function in septic pediatric patients: a retrospective study. PeerJ. 2018;6:e5538.

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  9. Gando S, Saitoh D, Ishikura H, Ueyama M, Otomo Y, Oda S, et al. A randomized, controlled, multicenter trial of the effects of antithrombin on disseminated intravascular coagulation in patients with sepsis. Crit Care. 2013;17:R297.

    Article  PubMed  PubMed Central  Google Scholar 

  10. Rhodes A, Evans LE, Alhazzani W, Levy MM, Antonelli M, Ferrer R, et al. Surviving sepsis campaign: International Guidelines for Management of Sepsis and Septic Shock: 2016. Intensive Care Med. 2017;43:304–77.

    Article  PubMed  Google Scholar 

  11. Galley HF. Oxidative stress and mitochondrial dysfunction in sepsis. Br J Anaesth. 2011;107:57–64.

    Article  CAS  PubMed  Google Scholar 

  12. Brealey D, Brand M, Hargreaves I, Heales S, Land J, Smolenski R, et al. Association between mitochondrial dysfunction and severity and outcome of septic shock. Lancet. 2002;360:219–23.

    Article  CAS  PubMed  Google Scholar 

  13. Crouser ED. Mitochondrial dysfunction in septic shock and multiple organ dysfunction syndrome. Mitochondrion. 2004;4:729–41.

    Article  CAS  PubMed  Google Scholar 

  14. Murphy MP. How mitochondria produce reactive oxygen species. Biochem J. 2009;417:1–13.

    Article  CAS  PubMed  Google Scholar 

  15. Ozawa T. Mitochondrial genome mutation in cell death and aging. J Bioenerg Biomembr. 1999;31:377–90.

    Article  CAS  PubMed  Google Scholar 

  16. Lowes DA, Webster NR, Murphy MP, Galley HF. Antioxidants that protect mitochondria reduce interleukin-6 and oxidative stress, improve mitochondrial function, and reduce biochemical markers of organ dysfunction in a rat model of acute sepsis. Br J Anaesth. 2013;110:472–80.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  17. Oliveira GP, Oliveira MBG, Santos RS, Lima LD, Dias CM, Saber AMAB, et al. Intravenous glutamine decreases lung and distal organ injury in an experimental model of abdominal sepsis. Crit Care. 2009;13:R74.

    Article  PubMed  PubMed Central  Google Scholar 

  18. Ohsawa I, Ishikawa M, Takahashi K, Watanabe M, Nishimaki K, Yamagata K, et al. Hydrogen acts as a therapeutic antioxidant by selectively reducing cytotoxic oxygen radicals. Nat Med. 2007;13:688–94.

    Article  CAS  PubMed  Google Scholar 

  19. Zhang J, Wu Q, Song S, Wan Y, Zhang R, Tai M, et al. Effect of hydrogen-rich water on acute peritonitis of rat models. Int Immunopharmacol. 2014;21:94–101.

    Article  CAS  PubMed  Google Scholar 

  20. Xie K, Liu L, Yu Y, Wang G. Hydrogen gas presents a promising therapeutic strategy for sepsis. Biomed Res Int. 2014;2014:807635.

    Article  PubMed  PubMed Central  Google Scholar 

  21. Li GM, Ji MH, Sun XJ, Zeng QT, Tian M, Fan YX, et al. Effects of hydrogen-rich saline treatment on polymicrobial sepsis. J Surg Res. 2013;181:279–86.

    Article  CAS  PubMed  Google Scholar 

  22. Schein M, Gecelter G, Freinkel W, Gerding H, Becker PJ. Peritoneal lavage in abdominal sepsis: a controlled clinical study. Arch Surg. 1990;125:1132–5.

    Article  CAS  PubMed  Google Scholar 

  23. Wichterman KA, Baue AE, Chaudry IH. Sepsis and septic shock—a review of laboratory models and a proposal. J Surg Res. 1980;29(2):189–201.

    Article  CAS  PubMed  Google Scholar 

  24. Hubbard WJ, Choudhry M, Schwacha MG, Kerby JD, Rue LW, Bland KI, et al. Cecal ligation and puncture. Shock. 2005;24:52–7.

    Article  PubMed  Google Scholar 

  25. Richter C, Park JW, Ames BN. Normal oxidative damage to mitochondrial and nuclear DNA is extensive. Proc Natl Acad Sci USA. 1988;85:6465–7.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  26. Li J, Hong Z, Liu H, Zhou J, Cui L, Yuan S, et al. Hydrogen-rich saline promotes the recovery of renal function after ischemia/reperfusion injury in rats via anti-apoptosis and anti-inflammation. Front Pharmacol. 2016;7:106.

    Article  PubMed  PubMed Central  Google Scholar 

  27. Korsmeyer SJ, Shutter JR, Veis DJ, Merry DE, Oltvai ZN. Bcl-2/Bax: a rheostat that regulates an anti-oxidant pathway and cell death. Semin Cancer Biol. 1993;4:327–33.

    CAS  PubMed  Google Scholar 

  28. Thimmulappa RK, Scollick C, Traore K, Yates M, Trush MA, Liby KT, et al. Nrf2-dependent protection from LPS induced inflammatory response and mortality by CDDO-Imidazolide. Biochem Biophys Res Commun. 2006;351:883–9.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  29. Kong X, Thimmulappa R, Kombairaju P, Biswal S. NADPH oxidase-dependent reactive oxygen species mediate amplified TLR4 signaling and sepsis-induced mortality in Nrf2-deficient mice. J Immunol. 2010;185:569–77.

    Article  CAS  PubMed  Google Scholar 

  30. Biswal SRD. Sepsis: redox mechanisms and therapeutic opportunities. Antioxid Redox Signal. 2007;9:1959–61.

    Article  CAS  PubMed  Google Scholar 

  31. Garrabou G, Morén C, López S, Tobías E, Cardellach F, Miró Ò, et al. The effects of sepsis on mitochondria. J Infect Dis. 2012;205:392–400.

    Article  CAS  PubMed  Google Scholar 

  32. Huang LJ, Hsu C, Tsai TN, Wang SJ, Yang RC. Suppression of mitochondrial ATPase inhibitor protein (IF1) in the liver of late septic rats. Biochim Biophys Acta-Bioenerg. 2007;1767:888–96.

    Article  CAS  Google Scholar 

  33. Terawaki H, Zhu WJ, Matsuyama Y, Terada T, Takahashi Y, Sakurai K, et al. Effect of a hydrogen (H2)-enriched solution on the albumin redox of hemodialysis patients. Hemodial Int. 2014;18:459–66.

    Article  PubMed  Google Scholar 

  34. Yoritaka A, Takanashi M, Hirayama M, Nakahara T, Ohta S, Hattori N. Pilot study of H2 therapy in Parkinson’s disease: a randomized double-blind placebo-controlled trial. Mov Disord. 2013;28:836–9.

    Article  CAS  PubMed  Google Scholar 

  35. Terawaki H, Hayashi Y, Zhu W-J, Matsuyama Y, Terada T, Kabayama S, et al. Transperitoneal administration of dissolved hydrogen for peritoneal dialysis patients: a novel approach to suppress oxidative stress in the peritoneal cavity. Med Gas Res. 2013;3:14.

    Article  PubMed  PubMed Central  Google Scholar 

  36. Song G, Li M, Sang H, Zhang L, Li X, Yao S, et al. Hydrogen-rich water decreases serum LDL-cholesterol levels and improves HDL function in patients with potential metabolic syndrome. J Lipid Res. 2013;54(7):1884–93.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  37. Nagatani K, Nawashiro H, Takeuchi S, Tomura S, Otani N, Osada H, et al. Safety of intravenous administration of hydrogen-enriched fluid in patients with acute cerebral ischemia: initial clinical studies. Med Gas Res. 2013;3:13.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  38. Matsumoto S, Ueda T, Kakizaki H. Effect of supplementation with hydrogen-rich water in patients with interstitial cystitis/painful bladder syndrome. Urology. 2013;81:226–30.

    Article  PubMed  Google Scholar 

  39. Ono H, Nishijima Y, Adachi N, Sakamoto M, Kudo Y, Kaneko K, et al. A basic study on molecular hydrogen (H2) inhalation in acute cerebral ischemia patients for safety check with physiological parameters and measurement of blood H2 level. Med Gas Res. 2012;2:21.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  40. Chen Y, Zong C, Guo Y, Tian L. Hydrogen-rich saline may be an effective and specific novel treatment for osteoradionecrosis of the jaw. Ther Clin Risk Manag. 2015;11:1581–5.

    CAS  PubMed  PubMed Central  Google Scholar 

  41. Gao Y, Yang H, Fan Y, Li L, Fang J, Yang W. Hydrogen-rich saline attenuates cardiac and hepatic injury in doxorubicin rat model by inhibiting inflammation and apoptosis. Mediat Inflamm. 2016;206:1–10.

    CAS  Google Scholar 

  42. Takahashi M, Chen-Yoshikawa TF, Saito M, Tanaka S, Miyamoto E, Ohata K, et al. Immersing lungs in hydrogen-rich saline attenuates lung ischaemia-reperfusion injury. Eur J Cardio-thoracic Surg. 2017;51:442–8.

    Google Scholar 

Download references

Acknowledgements

This work was carried out at the Research Facilities for Laboratory Animal Science, Natural Science Center for Basic Research and Development (N-BARD), Hiroshima University.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Hiroyuki Egi.

Ethics declarations

Conflict of interest

Haruki Sada, Hiroyuki Egi, Kentaro Ide, Hiroyuki Sawada, Yusuke Sumi, Minoru Hattori, Kazuhiro Sentani, Naohide Oue, Wataru Yasui and Hideki Ohdan declare that they have no conflicts of interest.

Ethical approval

All procedures performed in studies involving animals were in accordance with the ethical standards of institution or practice at which the studies were conducted. All experiments using rats were performed under protocols approved by the Institutional Animal Care and Use Committee of Hiroshima University (number: A14-133-4) and those for pigs were approved by the Animal Care and Use Committee of Intervention Technical Center (IVTeC), Japan (number: IVT 16-10).

Additional information

Publisher's Note

Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Sada, H., Egi, H., Ide, K. et al. Peritoneal lavage with hydrogen-rich saline can be an effective and practical procedure for acute peritonitis. Surg Today 51, 1860–1871 (2021). https://doi.org/10.1007/s00595-021-02271-z

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s00595-021-02271-z

Keywords

Navigation