Association between low preoperative skeletal muscle quality and infectious complications following gastrectomy for gastric cancer

Abstract

Purpose

It is known that sarcopenia affects the overall short- and long-term outcomes of patients with gastric cancer (GC); however, the effect of muscle quality on infectious complications after gastrectomy for GC remains unclear. We investigated the associations between the preoperative quantity and quality of skeletal muscle on infectious complications following gastrectomy for GC.

Methods

The subjects of this retrospective study were 353 GC patients who underwent radical gastrectomy between 2009 and 2018. We examined the relationships between their clinical factors, including skeletal muscle mass index and intramuscular adipose tissue content (IMAC), and infectious complications after gastrectomy.

Results

Infectious complications developed in 59 patients (16.7%). The independent risk factors for infectious complications identified by multivariate analysis were male gender (P < 0.001), prognostic nutritional index below 45 (P = 0.006), and high IMAC (P = 0.011). Patients with a high IMAC were older and had a higher body mass index, as well as a greater age-adjusted Charlson comorbidity index, than those with low or normal IMAC.

Conclusions

Low skeletal muscle quality defined by a high IMAC is a risk factor for infectious complications following gastrectomy. When feasible, preoperative nutritional intervention and rehabilitation aiming to improve muscle quality could reduce infectious complications after gastrectomy for GC.

This is a preview of subscription content, access via your institution.

Fig. 1
Fig. 2
Fig. 3

References

  1. 1.

    Fitzmaurice C, Akinyemiju TF, Al Lami FH, Alam T, Alizadeh-Navaei R, Allen C, et al. Global, regional, and national cancer incidence, mortality, years of life lost, years lived with disability, and disability-adjusted life-years for 29 cancer groups, 1990 to 2016 a systematic analysis for the global burden of disease study. JAMA Oncol. 2018;4:1553–68.

    PubMed  Article  PubMed Central  Google Scholar 

  2. 2.

    Japanese Gastric Cancer Association. Japanese gastric cancer treatment guidelines 2014 (ver. 4). Gastric Cancer. 2017;20:1–19.

    Article  Google Scholar 

  3. 3.

    Hayashi T, Yoshikawa T, Aoyama T, Hasegawa S, Yamada T, Tsuchida K, et al. Impact of infectious complications on gastric cancer recurrence. Gastric Cancer. 2015;18:368–74.

    PubMed  Article  PubMed Central  Google Scholar 

  4. 4.

    Fujiya K, Tokunaga M, Mori K, Makuuchi R, Tanizawa Y, Bando E, et al. Long-term survival in patients with postoperative intra-abdominal infectious complications after curative gastrectomy for gastric cancer: a propensity score matching analysis. Ann Surg Oncol. 2016;23:809–16.

    PubMed  Article  PubMed Central  Google Scholar 

  5. 5.

    Mohri Y, Tanaka K, Toiyama Y, Ohi M, Yasuda H, Inoue Y, et al. Impact of preoperative neutrophil to lymphocyte ratio and postoperative infectious complications on survival after curative gastrectomy for gastric cancer: a single institutional cohort study. Medicine (Baltimore). 2016;95:1–7.

    Article  CAS  Google Scholar 

  6. 6.

    Tsujimoto H, Ichikura T, Ono S, Sugasawa H, Hiraki S, Sakamoto N, et al. Impact of postoperative infection on long-term survival after potentially curative resection for gastric cancer. Ann Surg Oncol. 2009;16:311–8.

    PubMed  Article  PubMed Central  Google Scholar 

  7. 7.

    Sierzega M, Kolodziejczyk P, Kulig J. Impact of anastomotic leakage on long-term survival after total gastrectomy for carcinoma of the stomach. Br J Surg. 2010;97:1035–42.

    CAS  PubMed  Article  PubMed Central  Google Scholar 

  8. 8.

    Rosenberg IH. Summary comments: epidemiological and methodological problems in determining nutritional status of older persons. Am J Clin Nutr. 1989;50:1231–3.

    Article  Google Scholar 

  9. 9.

    Rosenberg IH. Symposium: sarcopenia: diagnosis and mechanisms. J Nutr. 1997;127:990–1.

    Article  Google Scholar 

  10. 10.

    Cruz-Jentoft AJ, Baeyens JP, Bauer JM, Boirie Y, Cederholm T, Landi F, et al. Sarcopenia: European consensus on definition and diagnosis. Age Ageing. 2010;39:412–23.

    PubMed  PubMed Central  Article  Google Scholar 

  11. 11.

    Voron T, Tselikas L, Pietrasz D, Pigneur F, Laurent A, Compagnon P, et al. Sarcopenia impacts on short- and long-term results of hepatectomy for hepatocellular carcinoma. Ann Surg. 2015;261:1173–83.

    PubMed  Article  Google Scholar 

  12. 12.

    Simonsen C, De Heer P, Bjerre ED, Suetta C, Hojman P, Pedersen BK, et al. Sarcopenia and postoperative complication risk in gastrointestinal surgical oncology. Ann Surg. 2018;268:58–69.

    PubMed  Article  PubMed Central  Google Scholar 

  13. 13.

    Fukuda Y, Yamamoto K, Hirao M, Nishikawa K, Nagatsuma Y, Nakayama T, et al. Sarcopenia is associated with severe postoperative complications in elderly gastric cancer patients undergoing gastrectomy. Gastric Cancer. 2016;19:986–93.

    PubMed  Article  Google Scholar 

  14. 14.

    Kawamura T, Makuuchi R, Tokunaga M, Tanizawa Y, Bando E, Yasui H, et al. Long-term outcomes of gastric cancer patients with preoperative sarcopenia. Ann Surg Oncol. 2018;25:1625–32.

    PubMed  Article  Google Scholar 

  15. 15.

    Le ZC, Huang DD, Pang WY, Zhou CJ, Wang SL, Lou N, et al. Sarcopenia is an independent predictor of severe postoperative complications and long-term survival after radical gastrectomy for gastric cancer: analysis from a large-scale cohort. Medicine (Baltimore). 2016;95:e3164.

    Article  CAS  Google Scholar 

  16. 16.

    Cruz-Jentoft AJ, Bahat G, Bauer J, Boirie Y, Bruyère O, Cederholm T, et al. Sarcopenia: revised European consensus on definition and diagnosis. Age Ageing. 2019;48:16–31.

    PubMed  Article  Google Scholar 

  17. 17.

    Zoico E, Corzato F, Bambace C, Rossi AP, Micciolo R, Cinti S, et al. Myosteatosis and myofibrosis: relationship with aging, inflammation and insulin resistance. Arch Gerontol Geriatr. 2013;57:411–6.

    CAS  PubMed  PubMed Central  Article  Google Scholar 

  18. 18.

    Kitajima Y, Eguchi Y, Ishibashi E, Nakashita S, Aoki S, Toda S, et al. Age-related fat deposition in multifidus muscle could be a marker for nonalcoholic fatty liver disease. J Gastroenterol. 2010;45:218–24.

    PubMed  Article  PubMed Central  Google Scholar 

  19. 19.

    Kitajima Y, Hyogo H, Sumida Y, Eguchi Y, Ono N, Kuwashiro T, et al. Severity of non-alcoholic steatohepatitis is associated with substitution of adipose tissue in skeletal muscle. J Gastroenterol Hepatol. 2013;28:1507–14.

    PubMed  Article  PubMed Central  Google Scholar 

  20. 20.

    Hamaguchi Y, Kaido T, Okumura S, Kobayashi A, Fujimoto Y, Ogawa K, et al. Muscle steatosis is an independent predictor of postoperative complications in patients with hepatocellular carcinoma. World J Surg. 2016;40:1959–68.

    PubMed  Article  PubMed Central  Google Scholar 

  21. 21.

    Hamaguchi Y, Kaido T, Okumura S, Ito T, Fujimoto Y, Ogawa K, et al. Preoperative intramuscular adipose tissue content is a novel prognostic predictor after hepatectomy for hepatocellular carcinoma. J Hepatobiliary Pancreat Sci. 2015;22:475–85.

    PubMed  Article  PubMed Central  Google Scholar 

  22. 22.

    Okumura S, Kaido T, Hamaguchi Y, Fujimoto Y, Masui T, Mizumoto M, et al. Impact of preoperative quality as well as quantity of skeletal muscle on survival after resection of pancreatic cancer. Surgery. 2015;157:1088–98.

    PubMed  Article  PubMed Central  Google Scholar 

  23. 23.

    Okumura S, Kaido T, Hamaguchi Y, Fujimoto Y, Kobayashi A, Iida T, et al. Impact of the preoperative quantity and quality of skeletal muscle on outcomes after resection of extrahepatic biliary malignancies. Surgery. 2016;159:821–33.

    PubMed  Article  PubMed Central  Google Scholar 

  24. 24.

    Brierley JD, Gospodarowicz MK, Wittekind C. TNM classification of malignant tumours. 8th ed. New York: Wiley; 2017. p. 241.

    Google Scholar 

  25. 25.

    Charlson M, Szatrowski TP, Peterson J, Gold J. Validation of a combined comorbidity index. J Clin Epidemiol. 1994;47:1245–51.

    CAS  PubMed  Article  PubMed Central  Google Scholar 

  26. 26.

    Charlson M, Pompei P, Ales KL, MacKenzie CR. A new method of classifying prognostic comorbidity in longitudinal studies: development and validation. J Chronic Dis. 1987;40:373–83.

    CAS  PubMed  Article  PubMed Central  Google Scholar 

  27. 27.

    Dindo D, Demartines N, Clavien PA. Classification of surgical complications: a new proposal with evaluation in a cohort of 6336 patients and results of a survey. Ann Surg. 2004;240:205–13.

    PubMed  PubMed Central  Article  Google Scholar 

  28. 28.

    Mitsiopoulos N, Baumgartner RN, Heymsfield SB, Lyons W, Gallagher D, Ross R. Cadaver validation of skeletal muscle measurement by magnetic resonance imaging and computerized tomography. J Appl Physiol. 1998;85:115–22.

    CAS  PubMed  Article  PubMed Central  Google Scholar 

  29. 29.

    Shishido Y, Fujitani K, Yamamoto K, Hirao M, Tsujinaka T, Sekimoto M. C-reactive protein on postoperative day 3 as a predictor of infectious complications following gastric cancer resection. Gastric Cancer. 2016;19:293–301.

    CAS  PubMed  Article  PubMed Central  Google Scholar 

  30. 30.

    Tokunaga M, Hiki N, Fukunaga T, Ogura T, Miyata S, Yamaguchi T. Effect of individual fat areas on early surgical outcomes after open gastrectomy for gastric cancer. Br J Surg. 2009;96:496–500.

    CAS  PubMed  Article  PubMed Central  Google Scholar 

  31. 31.

    Inagawa S, Adachi S, Oda T, Kawamoto T, Koike N, Fukao K. Effect of fat volume on postoperative complications and survival rate after D2 dissection for gastric cancer. Gastric Cancer. 2000;3:141–4.

    PubMed  Article  PubMed Central  Google Scholar 

  32. 32.

    Kanda M, Mizuno A, Tanaka C, Kobayashi D, Fujiwara M, Iwata N, et al. Nutritional predictors for postoperative short-term and long-term outcomes of patients with gastric cancer. Medicine (Baltimore). 2016;95:1–8.

    Article  CAS  Google Scholar 

  33. 33.

    Zhou J, Hiki N, Mine S, Kumagai K, Ida S, Jiang X, et al. Role of prealbumin as a powerful and simple index for predicting postoperative complications after gastric cancer surgery. Ann Surg Oncol. 2017;24:510–7.

    CAS  PubMed  Article  PubMed Central  Google Scholar 

  34. 34.

    Horii N, Sawda Y, Kumamoto T, Tsuchiya N, Murakami T, Yabushita Y, et al. Impact of intramuscular adipose tissue content on short- and long-term outcomes of hepatectomy for colorectal liver metastasis: a retrospective analysis. World J Surg Oncol. 2020;18:1–10.

    Article  Google Scholar 

  35. 35.

    Tilg H, Moschen AR. Adipocytokines: mediators linking adipose tissue, inflammation and immunity. Nat Rev Immunol. 2006;6:772–83.

    CAS  PubMed  Article  PubMed Central  Google Scholar 

  36. 36.

    Park J, Morley TS, Kim M, Clegg DJ, Scherer PE. Obesity and cancer–mechanisms underlying tumour progression and recurrence. Nat Rev Endocrinol. 2014;10:455–65.

    CAS  PubMed  PubMed Central  Article  Google Scholar 

  37. 37.

    Lutz CT, Quinn LBS. Sarcopenia, obesity, and natural killer cell immune senescence in aging: altered cytokine levels as a common mechanism. Aging. 2012;4:535–46.

    CAS  PubMed  PubMed Central  Article  Google Scholar 

  38. 38.

    Miki Y, Makuuchi R, Tokunaga M, Tanizawa Y, Bando E, Kawamura T, et al. Risk factors for postoperative pneumonia after gastrectomy for gastric cancer. Surg Today. 2016;46:552–6.

    PubMed  Article  PubMed Central  Google Scholar 

  39. 39.

    Shibata C, Ogawa H, Nakano T, Koyama K, Yamamoto K, Nagao M, et al. Influence of age on postoperative complications especially pneumonia after gastrectomy for gastric cancer. BMC Surg. 2019;19:1–7.

    CAS  Article  Google Scholar 

  40. 40.

    van der Kroft G, van Dijk DPJ, Rensen SS, Van Tiel FH, de Greef B, West M, et al. Low thoracic muscle radiation attenuation is associated with postoperative pneumonia following partial hepatectomy for colorectal metastasis. HPB. 2019;22:1011–9.

    PubMed  Article  PubMed Central  Google Scholar 

  41. 41.

    Aubrey J, Esfandiari N, Baracos VE, Buteau FA, Frenette J, Putman CT, et al. Measurement of skeletal muscle radiation attenuation and basis of its biological variation. Acta Physiol. 2014;210:489–97.

    CAS  Article  Google Scholar 

  42. 42.

    Okazaki T, Ebihara S, Mori T, Izumi S, Ebihara T. Association between sarcopenia and pneumonia in older people. Geriatr Gerontol Int. 2020;20:7–13.

    PubMed  Article  PubMed Central  Google Scholar 

  43. 43.

    Zogg CK, Mungo B, Lidor AO, Stem M, Rios Diaz AJ, Haider AH, et al. Influence of body mass index on outcomes after major resection for cancer. Surgery. 2015;158:472–85.

    PubMed  Article  PubMed Central  Google Scholar 

  44. 44.

    Makuuchi R, Irino T, Tanizawa Y, Bando E, Kawamura T, Terashima M. Esophagojejunal anastomotic leakage following gastrectomy for gastric cancer. Surg Today. 2019;49:187–96.

    PubMed  Article  PubMed Central  Google Scholar 

  45. 45.

    Wang SL, Le ZC, Huang DD, Pang WY, Lou N, Chen FF, et al. Sarcopenia adversely impacts postoperative clinical outcomes following gastrectomy in patients with gastric cancer: a prospective study. Ann Surg Oncol. 2016;23:556–64.

    PubMed  Article  PubMed Central  Google Scholar 

  46. 46.

    Waki Y, Irino T, Makuuchi R, Notsu A, Kamiya S, Tanizawa Y, et al. Impact of preoperative skeletal muscle quality measurement on long-term survival after curative gastrectomy for locally advanced gastric cancer. World J Surg. 2019;43:3083–93.

    PubMed  Article  PubMed Central  Google Scholar 

  47. 47.

    Goodpaster BH, Carlson CL, Visser M, Kelley DE, Scherzinger A, Harris TB, et al. Attenuation of skeletal muscle and strength in the elderly: the health ABC study. J Appl Physiol. 2001;90:2157–65.

    CAS  PubMed  Article  PubMed Central  Google Scholar 

  48. 48.

    Gallagher D, Kuznia P, Heshka S, Albu J, Heymsfield SB, Goodpaster B, et al. Adipose tissue in muscle: a novel depot similar in size to visceral adipose tissue. Am J Clin Nutr. 2005;81:903–10.

    CAS  PubMed  PubMed Central  Article  Google Scholar 

  49. 49.

    Kaibori M, Ishizaki M, Iida H, Matsui K, Sakaguchi T, Inoue K, et al. Effect of intramuscular adipose tissue content on prognosis in patients undergoing hepatocellular carcinoma resection. J Gastrointest Surg. 2015;19:1315–23.

    PubMed  Article  PubMed Central  Google Scholar 

  50. 50.

    Kitajima Y, Takahashi H, Akiyama T, Murayama K, Iwane S, Kuwashiro T, et al. Supplementation with branched-chain amino acids ameliorates hypoalbuminemia, prevents sarcopenia, and reduces fat accumulation in the skeletal muscles of patients with liver cirrhosis. J Gastroenterol. 2018;53:427–37.

    CAS  PubMed  Article  PubMed Central  Google Scholar 

  51. 51.

    Karelis AD, Carvalho LP, Castillo MJE, Gagnon DH, Aubertin-Leheudre M. Effect on body composition and bone mineral density of walking with a robotic exoskeleton in adults with chronic spinal cord injury. J Rehabil Med. 2017;49:84–7.

    PubMed  Article  Google Scholar 

Download references

Author information

Affiliations

Authors

Corresponding author

Correspondence to Tsuneyuki Uchida.

Ethics declarations

Conflict of interest

Tsuneyuki Uchida and the other co-authors have no conflicts of interest to declare.

Additional information

Publisher's Note

Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Rights and permissions

Reprints and Permissions

About this article

Verify currency and authenticity via CrossMark

Cite this article

Uchida, T., Sekine, R., Matsuo, K. et al. Association between low preoperative skeletal muscle quality and infectious complications following gastrectomy for gastric cancer. Surg Today (2021). https://doi.org/10.1007/s00595-020-02225-x

Download citation

Keywords

  • Gastric cancer
  • Gastrectomy
  • Infectious complications
  • Intramuscular adipose tissue content (IMAC)
  • Sarcopenia