Skip to main content
Log in

Current status of hepatocyte-like cell therapy from stem cells

  • Review Article
  • Published:
Surgery Today Aims and scope Submit manuscript

Abstract

Organ liver transplantation and hepatocyte transplantation are not performed to their full potential because of donor shortage, which could be resolved by identifying new donor sources for the development of hepatocyte-like cells (HLCs). HLCs have been differentiated from some stem cell sources as alternative primary hepatocytes throughout the world; however, the currently available techniques cannot differentiate HLCs to the level of normal adult primary hepatocytes. The outstanding questions are as follows: which stem cells are the best cell sources? which protocol is the best way to differentiate them into HLCs? what is the definition of differentiated HLCs? how can we enforce the function of HLCs? what is the difference between HLCs and primary hepatocytes? what are the problems with HLC transplantation? This review summarizes the current status of HLCs, focusing on stem cell sources, the differentiation protocol for HLCs, the general characterization of HLCs, the generation of more functional HLCs, comparison with primary hepatocytes, and HLCs in cell-transplantation-based liver regeneration.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3

Similar content being viewed by others

Abbreviations

HLCs:

Hepatocyte-like cells

IPSCs:

Induced pluripotent stem cells

ESCs:

Embryonic stem cells

MSCs:

Mesenchymal stem cells

HGF:

Hepatocyte growth factor

PI3K:

Phosphoinositide 3-kinase

GSK3:

Glycogen synthase kinase 3

FGF:

Fibroblast growth factors

BMP:

Bone morphogenetic proteins

DMSO:

Dimethyl sulfoxide

OsM:

Oncostatin M

Dex:

Dexamethasone

AFP:

Alpha fetoprotein

IGF-1:

Insulin-like growth factor-I

SOX17:

SRY-Box 17

HEX:

Hematopoietically expressed homeobox

HNF:

Hepatocyte nuclear factor

FOXA2:

Forkhead box A2

ALB:

Albumin

ATD:

AAT deficiency

LDLR:

Low-density lipoprotein receptor

PCSK9:

Proprotein convertase subtilisin kexin type 9

FTA:

Familial transthyretin amyloidosis

GSD1A:

Glycogen storage disease type 1a

CN1:

Crigler-Najjar syndrome type 1

PH1:

Primary hyperoxaluria-1

EBiSC:

European Bank for induced pluripotent Stem Cells

FH:

Familial hypercholesterolemia

References

  1. Zhang K, Zhang L, Liu W, Ma X, Cen J, Sun Z, et al. In vitro expansion of primary human hepatocytes with efficient liver repopulation capacity. Cell Stem Cell. 2018;23:806–819.e4.

    CAS  PubMed  Google Scholar 

  2. Fu GB, Huang WJ, Zeng M, Zhou X, Wu HP, Liu CC, et al. Expansion and differentiation of human hepatocyte-derived liver progenitor-like cells and their use for the study of hepatotropic pathogens. Cell Res. 2019;29:8–22.

    CAS  PubMed  Google Scholar 

  3. Peng WC, Logan CY, Fish M, Anbarchian T, Aguisanda F, Álvarez-Varela A, et al. Inflammatory cytokine TNFα promotes the long-term expansion of primary hepatocytes in 3D culture. Cell. 2018;175:1607–1619.e15.

    CAS  PubMed  PubMed Central  Google Scholar 

  4. Evans MJ, Kaufman MH. Establishment in culture of pluripotential cells from mouse embryos. Nature. 1981;292:154–6.

    CAS  PubMed  Google Scholar 

  5. Thomson JA, Itskovitz-Eldor J, Shapiro SS, Waknitz MA, Swiergiel JJ, Marshall VS, et al. Embryonic stem cell lines derived from human blastocysts. Science. 1998;282:1145–7.

    CAS  PubMed  Google Scholar 

  6. Takahashi K, Yamanaka S. Induction of pluripotent stem cells from mouse embryonic and adult fibroblast cultures by defined factors. Cell. 2006;126:663–76.

    CAS  PubMed  Google Scholar 

  7. Takahashi K, Tanabe K, Ohnuki M, Narita M, Ichisaka T, Tomoda K, et al. Induction of pluripotent stem cells from adult human fibroblasts by defined factors. Cell. 2007;131(5):861–72.

    CAS  PubMed  Google Scholar 

  8. Saito Y, Shimada M, Utsunomiya T, Ikemoto T, Yamada S, Morine Y, et al. The protective effect of adipose-derived stem cells against liver injury by trophic molecules. J Surg Res. 2013;180(1):162–8.

    CAS  PubMed  Google Scholar 

  9. Saito Y, Shimada M, Utsunomiya T, Ikemoto T, Yamada S, Morine Y, et al. Homing effect of adipose-derived stem cells to the injured liver: the shift of stromal cell-derived factor 1 expressions. J Hepatobiliary Pancreat Sci. 2014;21(12):873–80.

    PubMed  Google Scholar 

  10. Jeong J, Kim KN, Chung MS, Kim HJ. Functional comparison of human embryonic stem cells and induced pluripotent stem cells as sources of hepatocyte-like cells. Tissue Eng Regen Med. 2016;13(6):740–9.

    CAS  PubMed  PubMed Central  Google Scholar 

  11. Citro L, Naidu S, Hassan F, Kuppusamy ML, Kuppusamy P, Angelos MG, et al. Comparison of human induced pluripotent stem-cell derived cardiomyocytes with human mesenchymal stem cells following acute myocardial infarction. PLoS ONE. 2014;9(12):e116281.

    PubMed  PubMed Central  Google Scholar 

  12. Yun YI, Park SY, Lee HJ, Ko JH, Kim MK, Wee WR, et al. Comparison of the anti-inflammatory effects of induced pluripotent stem cell-derived and bone marrow-derived mesenchymal stromal cells in a murine model of corneal injury. Cytotherapy. 2017;19(1):28–35.

    CAS  PubMed  Google Scholar 

  13. Abazari MF, Nasiri N, Nejati F, Zare Karizi S, Amini Faskhodi M, Saburi E, et al. Comparison of human-induced pluripotent stem cells and mesenchymal stem cell differentiation potential to insulin producing cells in 2D and 3D culture systems in vitro. J Cell Physiol. 2020;235(5):4239–46.

    CAS  PubMed  Google Scholar 

  14. Takebe T, Sekine K, Enomura M, Koike H, Kimura M, Ogaeri T, et al. Vascularized and functional human liver from an iPSC-derived organ bud transplant. Nature. 2013;499:481–4.

    CAS  PubMed  Google Scholar 

  15. Tolosa L, Caron J, Hannoun Z, Antoni M, López S, Burks D, et al. Transplantation of hESC-derived hepatocytes protects mice from liver injury. Stem Cell Res Ther. 2015;6:246.

    PubMed  PubMed Central  Google Scholar 

  16. Yin L, Zhu Y, Yang J, Ni Y, Zhou Z, Chen Y, et al. Adipose tissue-derived mesenchymal stem cells differentiated into hepatocyte-like cells in vivo and in vitro. Mol Med Rep. 2015;11:1722–32.

    CAS  PubMed  Google Scholar 

  17. Ishikawa T, Banas A, Hagiwara K, Iwaguro H, Ochiya T. Stem cells for hepatic regeneration: the role of adipose tissue derived mesenchymal stem cells. Curr Stem Cell Res Ther. 2010 Jun;5(2):182–9.

    CAS  PubMed  Google Scholar 

  18. Cong Du, Feng Y, Qiu D, Yan Xu, Pang M, Cai N, et al. Highly efficient and expedited hepatic differentiation from human pluripotent stem cells by pure small-molecule cocktails. Stem Cell Res Ther. 2018;9:58.

    Google Scholar 

  19. D'Amour KA, Agulnick AD, Eliazer S, Kelly OG, Kroon E, Baetge EE. Efficient differentiation of human embryonic stem cells to definitive endoderm. Nat Biotechnol. 2005;23:1534–41.

    CAS  PubMed  Google Scholar 

  20. Hay DC, Fletcher J, Payne C, Terrace JD, Gallagher RC, Snoeys J. Highly efficient differentiation of hESCs to functional hepatic endoderm requires ActivinA and Wnt3a signaling. Proc Natl Acad Sci USA. 2008;105:12301–6.

    CAS  PubMed  Google Scholar 

  21. Toivonen S, Lundin K, Balboa D, Ustinov J, Tamminen K, Palgi J, et al. Activin A and Wnt-dependent specification of human definitive endoderm cells. Exp Cell Res. 2013;319:2535–44.

    CAS  PubMed  Google Scholar 

  22. Chen YF, Tseng CY, Wang HW, Kuo HC, Yang VW, Lee OK. Rapid generation of mature hepatocyte-like cells from human induced pluripotent stem cells by an efficient three-step protocol. Hepatology. 2012;55:1193–203.

    CAS  PubMed  PubMed Central  Google Scholar 

  23. Touboul T, Hannan NR, Corbineau S, Martinez A, Martinet C, Branchereau S, et al. Generation of functional hepatocytes from human embryonic stem cells under chemically defined conditions that recapitulate liver development. Hepatology. 2010;51:1754–65.

    CAS  PubMed  Google Scholar 

  24. Magner NL, Jung Y, Wu J, Nolta JA, Zern MA, Zhou P. Insulin and IGFs enhance hepatocyte differentiation from human embryonic stem cells via the PI3K/AKT pathway. Stem Cells. 2013;31:2095–103.

    CAS  PubMed  PubMed Central  Google Scholar 

  25. Huang J, Guo X, Li W, Zhang H. Activation of Wnt/β-catenin signalling via GSK3 inhibitors direct differentiation of human adipose stem cells into functional hepatocytes. Sci Rep. 2017;17(7):40716.

    Google Scholar 

  26. Cai J, Zhao Y, Liu Y, Ye F, Song Z, Qin H, et al. Directed differentiation of human embryonic stem cells into functional hepatic cells. Hepatology. 2007;45:1229–39.

    CAS  PubMed  Google Scholar 

  27. Brolen G, Sivertsson L, Bjorquist P, et al. Hepatocyte-like cells derived from human embryonic stem cells specifically via definitive endoderm and a progenitor stage. J Biotechnol. 2010;145:284–94.

    CAS  PubMed  Google Scholar 

  28. Brolén G, Sivertsson L, Björquist P, Eriksson G, Ek M, Semb H, et al. FGF2 specifies hESC-derived definitive endoderm into foregut/midgut cell lineages in a concentration-dependent manner. Stem Cells. 2010;28:45–56.

    Google Scholar 

  29. Hay DC, Zhao D, Fletcher J, Hewitt ZA, McLean D, Urruticoechea-Uriguen A, et al. Efficient differentiation of hepatocytes from human embryonic stem cells exhibiting markers recapitulating liver development in vivo. Stem Cells. 2008;26:894–902.

    CAS  PubMed  Google Scholar 

  30. Kajiwara M, Aoi T, Okita K, Takahashi R, Inoue H, Takayama N, et al. Donor-dependent variations in hepatic differentiation from human-induced pluripotent stem cells. Proc Natl Acad Sci USA. 2012;109:12538–43.

    CAS  PubMed  Google Scholar 

  31. Si-Tayeb K, Lemaigre FP, Duncan SA. Organogenesis and development of the liver. Dev Cell. 2010;18:175–89.

    CAS  PubMed  Google Scholar 

  32. Snykers S, De Kock J, Rogiers V, Vanhaecke T. In vitro differentiation of embryonic and adult stem cells into hepatocytes: state of the art. Stem Cells. 2009;27:577–605.

    CAS  PubMed  PubMed Central  Google Scholar 

  33. Agarwal S, Holton KL, Lanza R. Efficient differentiation of functional hepatocytes from human embryonic stem cells. Stem Cells. 2008;26(5):1117–27.

    CAS  PubMed  Google Scholar 

  34. Takayama K, Hagihara Y, Toba Y, Sekiguchi K, Sakurai F, Mizuguchi H. Enrichment of high-functioning human iPS cell-derived hepatocyte-like cells for pharmaceutical research. Biomaterials. 2018;161:24–322.

    CAS  PubMed  Google Scholar 

  35. Chen AA, Thomas DK, Ong LL, Schwartz RE, Golub TR, Bhatia SN, et al. Humanized mice with ectopic artificial liver tissues. Proc Natl Acad Sci USA. 2011;108(29):11842–7.

    CAS  PubMed  Google Scholar 

  36. Si-Tayeb K. Highly efficient generation of human hepatocyte-like cells from induced pluripotent stem cells. Hepatology. 2010;51(1):297–305.

    CAS  PubMed  PubMed Central  Google Scholar 

  37. Cayo MA, Cai J, DeLaForest A, Noto FK, Nagaoka M, Clark BS, et al. ‘JD’ iPS cell-derived hepatocytes faithfully recapitulate the pathophysiology of familial hypercholesterolemia. Hepatology. 2012;56(6):2163–71.

    CAS  PubMed  PubMed Central  Google Scholar 

  38. Khetani SR, Bhatia SN. Microscale culture of human liver cells for drug development. Nat Biotechnol. 2008;26(1):120–6.

    CAS  PubMed  Google Scholar 

  39. Tada K, Roy-Chowdhury N, Prasad V, Kim BH, Manchikalapudi P, Fox IJ, et al. Long-term amelioration of bilirubin glucuronidation defect in Gunn rats by transplanting genetically modified immortalized autologous hepatocytes. Cell Transplant. 1998;7(6):607–16.

    CAS  PubMed  Google Scholar 

  40. Murray JW, Thosani AJ, Wang P, Wolkoff AW. Heterogeneous accumulation of fluorescent bile acids in primary rat hepatocytes does not correlate with their homogenous expression of ntcp. Am J Physiol Gastrointest Liver Physiol. 2011;301(1):G60–G6868.

    CAS  PubMed  PubMed Central  Google Scholar 

  41. Yu Y, Liu H, Ikeda Y, Amiot BP, Rinaldo P, Duncan SA, et al. Hepatocyte-like cells differentiated from human induced pluripotent stem cells: relevance to cellular therapies. Stem Cell Res. 2012;9:196e207.

    Google Scholar 

  42. Baxter M, Withey S, Harrison S, Segeritz CP, Zhang F, Atkinson-Dell R, et al. Phenotypic and functional analyses show stem cell-derived hepatocyte-like cells better mimic fetal rather than adult hepatocytes. J Hepatol. 2015;62:581e9.

    Google Scholar 

  43. Ogawa S, Surapisitchat J, Virtanen C, Ogawa M, Niapour M, Sugamori KS, et al. Three-dimensional culture and cAMP signaling promote the maturation of human pluripotent stem cell-derived hepatocytes. Development. 3285e;140:3285e96.

    Google Scholar 

  44. Kotaka M, Toyoda T, Yasuda K, Kitano Y, Okada C, Ohta A, et al. Adrenergic receptor agonists induce the differentiation of pluripotent stem cell-derived hepatoblasts into hepatocyte-like cells. Sci Rep. 2017;7(1):16734.

    PubMed  PubMed Central  Google Scholar 

  45. Kondo Y, Iwao T, Yoshihashi S, Mimori K, Ogihara R, Nagata K, et al. Histone deacetylase inhibitor valproic acid promotes the differentiation of human induced pluripotent stem cells into hepatocyte-like cells. PLoS ONE. 2014;9:e104010.

    PubMed  PubMed Central  Google Scholar 

  46. Shabani Azandaryani Z, Davoodian N, Samiei A, Rouzbehan S. Insulin-like growth factor-I promotes hepatic differentiation of human adipose tissue-derived stem cells. Cell Biol Int. 2019;43(5):476–85.

    CAS  PubMed  Google Scholar 

  47. Shan J, Schwartz RE, Ross NT, Logan DJ, Thomas D, Duncan SA, et al. Identification of small molecules for human hepatocyte expansion and iPS differentiation. Nat Chem Biol. 2013;9:514e20.

    Google Scholar 

  48. Takayama K, Inamura M, Kawabata K, Tashiro K, Katayama K, Sakurai F, et al. Efficient and directive generation of two distinct endoderm lineages from human ESCs and iPSCs by differentiation stage-specific SOX17 transduction. PLoS ONE. 2011;6:e21780.

    CAS  PubMed  PubMed Central  Google Scholar 

  49. Inamura M, Kawabata K, Takayama K, Tashiro K, Sakurai F, Katayama K, et al. Efficient generation of hepatoblasts from human ES cells and iPS cells by transient overexpression of homeobox gene HEX. Mol Ther. 2011;19:400e7.

    Google Scholar 

  50. Takayama K, Inamura M, Kawabata K, Katayama K, Higuchi M, Tashiro K, et al. Efficient generation of functional hepatocytes from human embryonic stem cells and induced pluripotent stem cells by HNF4alpha transduction. Mol Ther. 2012;20:127e37.

    Google Scholar 

  51. Takayama K, Inamura M, Kawabata K, Sugawara M, Kikuchi K, Higuchi M, et al. Generation of metabolically functioning hepatocytes from human pluripotent stem cells by FOXA2 and HNF1alpha transduction. J Hepatol. 2012;57:628e36.

    Google Scholar 

  52. Sasaki T, Takahashi S, Numata Y, Narita M, Tanaka Y, Kumagai T, et al. Hepatocyte nuclear factor 6 activates the transcription of CYP3A4 in hepatocytelike cells differentiated from human induced pluripotent stem cells. Drug Metab Pharmacokinet. 2013;28:250e9.

    Google Scholar 

  53. Miki T, Ring A, Gerlach J. Hepatic differentiation of human embryonic stem cells is promoted by three-dimensional dynamic perfusion culture conditions. Tissue Eng Part C Methods. 2011;17:557e68.

    Google Scholar 

  54. Takayama K, Kawabata K, Nagamoto Y, Kishimoto K, Tashiro K, Sakurai F, et al. 3D spheroid culture of hESC/hiPSC-derived hepatocyte-like cells for drug toxicity testing. Biomaterials. 1781e;34:1781e9.

    Google Scholar 

  55. Park Y, Chen Y, Ordovas L, Verfaillie CM. Hepatic differentiation of human embryonic stem cells on microcarriers. J Biotechnol. 2014;174:39e48.

    Google Scholar 

  56. Yao R, Wang J, Li X, Jung Jung D, Qi H, Kee KK, et al. Hepatic differentiation of human embryonic stem cells as microscaled multilayered colonies leading to enhanced homogeneity and maturation. Small. 4311e;10:4311e23.

    Google Scholar 

  57. Gieseck RL 3rd, Hannan NR, Bort R, Hanley NA, Drake RA, Cameron GW, et al. Maturation of induced pluripotent stem cell derived hepatocytes by 3D-culture. PLoS ONE. 2014;9:e86372.

    PubMed  Google Scholar 

  58. Mun SJ, Ryu JS, Lee MO, Son YS, Oh SJ, Cho HS, et al. Generation of expandable human pluripotent stem cell-derived hepatocyte-like liver organoids. J Hepatol. 2019;71(5):970–85.

    CAS  PubMed  Google Scholar 

  59. Pettinato G, Lehoux S, Ramanathan R, Salem MM, He LX, Muse O, et al. Generation of fully functional hepatocyte-like organoids from human induced pluripotent stem cells mixed with endothelial Cells. Sci Rep. 2019;9(1):8920.

    PubMed  PubMed Central  Google Scholar 

  60. Nagamoto Y, Tashiro K, Takayama K, Ohashi K, Kawabata K, Sakurai F, et al. The promotion of hepatic maturation of human pluripotent stem cells in 3D co-culture using type I collagen and Swiss 3T3 cell sheets. Biomaterials. 4526e;33:4526e34.

    Google Scholar 

  61. Du C, Narayanan K, Leong MF, Wan AC. Induced pluripotent stem cell-derived hepatocytes and endothelial cells in multi-component hydrogel fibers for liver tissue engineering. Biomaterials. 6006e;35:6006e14.

    Google Scholar 

  62. Berger DR, Ware BR, Davidson MD, et al. Enhancing the functional maturity of induced pluripotent stem cell-derived human hepatocytes by controlled presentation of cell-cell interactions in vitro. Hepatology. 1370e;61:1370e81.

    Google Scholar 

  63. Berger DR, Ware BR, Davidson MD, Allsup SR, Khetani SR. Deterministically patterned biomimetic human iPSC-derived hepatic model via rapid 3D bioprinting. Proc Natl Acad Sci USA. 2206e;113:2206e11.

    Google Scholar 

  64. Xing Q, Luo Y, Gao Y, Zhang S, Zhu Z, Wang Y, et al. Hepatectomised patient sera promote hepatocyte differentiation of human-induced pluripotent stem cells. Dig Liver Dis. 2014;46:731e7.

    Google Scholar 

  65. Ikemoto T, Feng R, Iwahashi SI, Yamada S, Saito Y, Morine Y, et al. In vitro and in vivo effects of insulin-producing cells generated by xeno-antigen free 3D culture with RCP piece. Sci Rep. 2019;9:10759.

    PubMed  PubMed Central  Google Scholar 

  66. Nakamura K, Cell SA. Cell aggregate-like technology using recombinant peptide pieces for MSC transplantation. Curr Stem Cell Res Ther. 2019;14:52–6.

    CAS  PubMed  PubMed Central  Google Scholar 

  67. Iwazawa R, Kozakai S, Kitahashi T, Nakamura K, Hata K. The therapeutic effects of adipose-derived stem cells and recombinant peptide pieces on mouse model of DSS colitis. Cell Transplant. 2018;27(9):1390–400.

    PubMed  PubMed Central  Google Scholar 

  68. Ronaldson-Bouchard K, Ma SP, Yeager K, Chen T, Song L, Sirabella D, et al. Advanced maturation of human cardiac tissue grown from pluripotent stem cells. Nature. 2018;556(7700):239–43.

    CAS  PubMed  PubMed Central  Google Scholar 

  69. Saito Y, Morine Y, Shimada M. Mechanism of Impairment on Liver Regeneration in Elderly Patients: Role of Hepatic Stellate Cell Function. Hepatol Res. 2017;47(6):505–13.

    PubMed  Google Scholar 

  70. Yoshizato K, Tateno C. In vivo modeling of human liver for pharmacological study using humanized mouse. Expert Opin Drug Metab Toxicol. 2009;5(11):1435–46.

    CAS  PubMed  Google Scholar 

  71. Carpentier A, Tesfaye A, Chu V, Nimgaonkar I, Zhang F, Lee SB, et al. Engrafted human stem cell-derived hepatocytes establish an infectious HCV murine model. J Clin Invest. 2014;124:4953–64.

    PubMed  PubMed Central  Google Scholar 

  72. Nagamoto Y, Takayama K, Tashiro K, Tateno C, Sakurai F, Tachibana M, et al. Efficient engraftment of human induced pluripotent stem cell-derived hepatocyte-like cells in uPA/SCID mice by overexpression of FNK, a Bcl-xL mutant gene. Cell Transplant. 2015;24:1127–38.

    PubMed  Google Scholar 

  73. Liu H, Kim Y, Sharkis S, Marchionni L, Jang YY. In vivo liver regeneration potential of human induced pluripotent stem cells from diverse origins. Sci Transl Med. 2011;3:82ra39.

    PubMed  PubMed Central  Google Scholar 

  74. Asgari S, Moslem M, Bagheri-Lankarani K, Pournasr B, Miryounesi M, Baharvand H. Differentiation and transplantation of human induced pluripotent stem cell-derived hepatocyte-like cells. Stem Cell Rev. 2013;9:493–504.

    CAS  Google Scholar 

  75. Song Z, Cai J, Liu Y, Zhao D, Yong J, Duo S, et al. Efficient generation of hepatocyte-like cells from human induced pluripotent stem cells. Cell Res. 2009;19:1233–42.

    PubMed  Google Scholar 

  76. Nagamoto Y, Takayama K, Ohashi K, Okamoto R, Sakurai F, Tachibana M, et al. Transplantation of a human iPSC-derived hepatocyte sheet increases survival in mice with acute liver failure. J Hepatol. 2016;64:1068–75.

    PubMed  Google Scholar 

  77. Rashid ST, Corbineau S, Hannan N, Marciniak SJ, Miranda E, Alexander G, et al. Modeling inherited metabolic disorders of the liver using human induced pluripotent stem cells. J Clin Investig. 2010;120(9):3127–36.

    CAS  PubMed  Google Scholar 

  78. Tafaleng EN, Chakraborty S, Han B, Hale P, Wu W, Soto-Gutierrez A, et al. Induced pluripotent stem cells model personalized variations in liver disease resulting from alpha1-antitrypsin deficiency. Hepatology. 2015;62(1):147–57.

    PubMed  PubMed Central  Google Scholar 

  79. Choi SM, Kim Y, Shim JS, Park JT, Wang RH, Leach SD, et al. Efficient drug screening and gene correction for treating liver disease using patient-specific stem cells. Hepatology. 2013;57(6):2458–68.

    CAS  PubMed  PubMed Central  Google Scholar 

  80. Zhang S, Chen S, Li W, Guo X, Zhao P, Xu J, et al. Rescue of ATP7B function in hepatocyte-like cells from Wilson’s disease induced pluripotent stem cells using gene therapy or the chaperone drug curcumin. Hum Mol Genet. 2011;20(16):3176–87.

    CAS  PubMed  Google Scholar 

  81. Brown MS, Goldstein JL. Biomedicine lowering LDL—not only how low, but how long? Science. 2006;311(5768):1721–3.

    CAS  PubMed  Google Scholar 

  82. Cayo MA, Cai J, DeLaForest A, Noto FK, Nagaoka M, Clark BS, et al. JD induced pluripotent stem cell-derived hepatocytes faithfully recapitulate the pathophysiology of familial hypercholesterolemia. Hepatology. 2012;56(6):2163–71.

    CAS  PubMed  PubMed Central  Google Scholar 

  83. Seidah NG, Awan Z, Chretien M, Mbikay M. PCSK9: a key modulator of cardiovascular health. Circ Res. 2014;114:1022–36.

    CAS  PubMed  Google Scholar 

  84. Leung A, Nah SK, Reid W, Ebata A, Koch CM, Monti S, et al. Induced pluripotent stem cell modeling of multisystemic, hereditary transthyretin amyloidosis. Stem Cell Rep. 2013;1(5):451–63.

    CAS  Google Scholar 

  85. Smets F, Dobbelaere D, McKiernan P, Dionisi-Vici C, Broué P, Jacquemin E, et al. Phase I/II trial of liver-derived mesenchymal stem cells in pediatric liver-based metabolic disorders: a prospective, open label, multicenter, partially randomized, safety study of one cycle of heterologous human adult liver-derived progenitor cells (hepastem) in urea cycle disorders and crigler-najjar syndrome patients. Transplantation. 2019 Sep;103(9):1903–15.

    PubMed  Google Scholar 

  86. Wen-Xiong Xu, He H-L, Pan S-W, Chen Y-L, Zhang M-L, Zhu S, et al. Combination treatments of plasma exchange and umbilical cord-derived mesenchymal stem cell transplantation for patients with hepatitis B virus-related acute-on-chronic liver failure: a clinical trial in China. Stem Cells Int. 2019;4(2019):4130757.

    Google Scholar 

  87. Lin BL, Chen JF, Qiu WH, Wang KW, Xie DY, Chen XY, et al. Allogeneic bone marrow-derived mesenchymal stromal cells for hepatitis B virus-related acute-on-chronic liver failure: A randomized controlled trial. Hepatology. 2017;66(1):209–19.

    CAS  PubMed  Google Scholar 

  88. Mohamadnejad M, Pournasr B, Bagheri M, Aghdami N, Shahsavani M, Hosseini LA, et al. Transplantation of allogeneic bone marrow mesenchymal stromal cell-derived hepatocyte-like cells in homozygous familial hypercholesterolemia. Cytotherapy. 2010;12(4):566–8.

    PubMed  Google Scholar 

  89. Amer M-E, El-Sayed SZ, El-Kheir WA, Gabr H, Gomaa AA, El-Noomani N, et al. Clinical and laboratory evaluation of patients with end-stage liver cell failure injected with bone marrow-derived hepatocyte-like cells. Eur J Gastroenterol Hepatol. 2011;10:936–41.

    Google Scholar 

Download references

Funding

No funding

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Yu Saito.

Ethics declarations

Conflict of interest statement

Yu Saito and the other co-authors have no conflicts of interest.

Additional information

Publisher's Note

Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Saito, Y., Ikemoto, T., Morine, Y. et al. Current status of hepatocyte-like cell therapy from stem cells. Surg Today 51, 340–349 (2021). https://doi.org/10.1007/s00595-020-02092-6

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s00595-020-02092-6

Keywords

Navigation