Cancer exosomal microRNAs from gefitinib-resistant lung cancer cells cause therapeutic resistance in gefitinib-sensitive cells

Abstract

Purpose

Exosomes and their cargo microRNAs play a significant role in various biological processes in cancer. We hypothesized that microRNAs in exosomes secreted by gefitinib-resistant lung cancer cells might induce resistant phenotypes in otherwise gefitinib-sensitive lung cancer cells.

Methods

We isolated exosomes generated by the gefitinib-resistant human lung adenocarcinoma cell line PS-9/ZD. PC-9, which is a gefitinib-sensitive cell line, was treated with the PC-9/ZD exosomes, and these PC-9 cells were analyzed for cell proliferation after treatment with gefitinib. miRNA arrays were analyzed in PC-9 and PC-9/ZD cells, and we isolated microRNAs that were expressed at elevated levels in PC-9/ZD cells. Furthermore, we transfected these microRNAs into PC-9 cells and analyzed the effects on the cells’ sensitivity to gefitinib.

Results

Exosomes isolated from PC-9/ZD cells significantly increased the proliferation of PC-9 cells during gefitinib treatment. A microRNA array analysis showed that miR-564, miR-658, miR-3652, miR-3126-5p, miR-3682-3p and miR-6810-5p were significantly upregulated in PC-9/ZD cells. PC-9 cells transfected with miR-564 or miR-658 showed chemo-resistant phenotypes.

Conclusion

Exosomal miR-564 and miR-658 derived from gefitinib-resistant lung cancer cells induce drug resistance in sensitive cells. Cell-to-cell interaction via exosomal microRNAs may be a novel mechanism and therapeutic target of resistance against gefitinib.

This is a preview of subscription content, access via your institution.

Fig. 1
Fig. 2
Fig. 3
Fig. 4

References

  1. 1.

    Herbst RS, Heymach JV, Lippman SM. Lung cancer. N Engl J Med. 2008;359:1367–80.

    CAS  PubMed  Google Scholar 

  2. 2.

    Maemondo M, Inoue A, Kobayashi K, Sugawara S, Oizumi S, Isobe H, et al. Gefitinib or chemotherapy for non-small-cell lung cancer with mutated EGFR. N Engl J Med. 2010;362:2380–8.

    CAS  PubMed  Google Scholar 

  3. 3.

    Mitsudomi T, Morita S, Yatabe Y, Negoro S, Okamoto I, Tsurutani J, et al. Gefitnib versus cisplatin plus docetaxel in patients with non-small cell lung cancer harboring mutations of the epidermal growth factor receptor (WJTOG3405): an open label, randomized phase 3 trial. Lancet Oncol. 2010;11:121–8.

    CAS  PubMed  Google Scholar 

  4. 4.

    Zhou C, Wu YL, Chen G, Feng J, Liu XQ, Wang C, et al. Erlotinib versus chemotherapy as first line treatment for patients with advanced EGFR mutation-positive non-small cell lung cancer (OPTIMAL, CTONG-0802): a multicentre, open-label, randomised phase 3 study. Lancet Oncol. 2011;12:735–42.

    CAS  PubMed  Google Scholar 

  5. 5.

    Rosell R, Carcereny E, Gervais R, Vergnenegre A, Massuti B, Felip E, et al. Erlotinib versus standard chemotherapy as first-line treatment for European patients with advanced EGFR mutationpositive non-small cell lung cancer (EURTAC): a multicenter, open-label, randomized phase 3 trial. Lancet Oncol. 2012;13:239–46.

    CAS  PubMed  Google Scholar 

  6. 6.

    Inoue A, Kobayashi K, Maemondo M, Sugawara S, Oizumi S, Isobe H, et al. Updated overall survival results from a randomized phase III trial comparing gefitinib with carboplatinpaclitaxel for chemo-naïve non-small cell lung cancer with sensitive EGFR mutations (NEJ002). Ann Oncol. 2013;24:54–9.

    CAS  PubMed  Google Scholar 

  7. 7.

    Chong CR, Jänne PA. The quest to overcome resistance to EGFR-targeted therapies in cancer. Nat Med. 2013;19:1389–400.

    CAS  PubMed  PubMed Central  Google Scholar 

  8. 8.

    Kahlert C, Kalluri R. Exosomes in tumor microenvironment influence cancer progression and metastasis. J Mol Med. 2013;91:431–7.

    CAS  PubMed  PubMed Central  Google Scholar 

  9. 9.

    Vader P, Breakefield XO, Wood MJ. Extracellular vesicles: emerging targets for cancer therapy. Trends Mol Med. 2014;20:385–93.

    CAS  PubMed  PubMed Central  Google Scholar 

  10. 10.

    Andaloussi SEL, Mäger I, Breakefield XO, Wood MJ. Extracellular vesicles: biology and emerging therapeutic opportunities. Nat Rev Drug Discov. 2013;12:347–57.

    Google Scholar 

  11. 11.

    Tickner JA, Urquhart AJ, Stephenson SA, Richard DJ, O'Byrne KJ. Functions and therapeutic roles of exosomes in cancer. Front Oncol. 2014;4:127.

    PubMed  PubMed Central  Google Scholar 

  12. 12.

    Suzuki HI, Katsura A, Matsuyama H, Miyazono K. MicroRNA regulons in tumor microenvironment. Oncogene. 2015;34:3085–94.

    CAS  PubMed  Google Scholar 

  13. 13.

    Melo SA, Sugimoto H, O'Connell JT, Kato N, Villanueva A, Vidal A, et al. Cancer exosomes perform cell-independent microRNA biogenesis and promote tumorigenesis. Cancer Cell. 2014;26:707–21.

    CAS  PubMed  PubMed Central  Google Scholar 

  14. 14.

    Chen WX, Liu XM, Lv MM, Chen L, Zhao JH, Zhong SL, et al. Exosomes from drug-resistant breast cancer cells transmit chemoresistance by a horizontal transfer of microRNAs. PLoS ONE. 2014;9:e95240.

    PubMed  PubMed Central  Google Scholar 

  15. 15.

    Camidge DR, Pao W, Sequist LV. Acquired resistance to TKIs in solid tumours: learning from lung cancer. Nat Rev Clin Oncol. 2014;11:473–81.

    CAS  PubMed  Google Scholar 

  16. 16.

    Rustom A, Saffrich R, Markovic I, Walther P, Gerdes HH. Nanotubular highways for intercellular organelle transport. Science. 2004;303:1007–100.

    CAS  Google Scholar 

  17. 17.

    Sherer NM, Mothes W. Cytonemes and tunnelling nanotubules in cell-cell communication and viral pathogenesis. Trends Cell Biol. 2008;18:414–20.

    CAS  PubMed  PubMed Central  Google Scholar 

  18. 18.

    Oshima A. Structure and closure of connexin gap junction channels. FEBS Lett. 2014;588:1230–7.

    CAS  PubMed  Google Scholar 

  19. 19.

    Majka M, Janowska-Wieczorek A, Ratajczak J, Ehrenman K, Pietrzkowski Z, Kowalska MA, et al. Numerous growth factors, cytokines, and chemokines are secreted by human CD34(+) cells, myeloblasts, erythroblasts, and megakaryoblasts and regulate normal hematopoiesis in an autocrine/paracrine manner. Blood. 2001;97:3075–85.

    CAS  PubMed  Google Scholar 

  20. 20.

    Wen SW, Sceneay J, Lima LG, Wong CS, Becker M, Krumeich S, et al. The biodistribution and immune suppressive effects of breast cancer-derived exosomes. Cancer Res. 2016;76:6816–27.

    CAS  PubMed  Google Scholar 

  21. 21.

    Costa-Silva B, Aiello NM, Ocean AJ, Singh S, Zhang H, Thakur BK, et al. Pancreatic cancer exosomes initiate pre-Metastatic niche formation in the liver. Nat Cell Biol. 2015;17:816–26.

    CAS  PubMed  PubMed Central  Google Scholar 

  22. 22.

    Hoshino A, Costa-Silva B, Shen T-L, Rodrigues G, Hashimoto A, Tesic Mark M, et al. Tumour exosome integrins determine organotropic metastasis. Nature. 2015;527:329–35.

    CAS  PubMed  PubMed Central  Google Scholar 

  23. 23.

    Melo SA, Luecke LB, Kahlert C, Fernandez AF, Gammon ST, Kaye J, et al. Glypican-1 identifies cancer exosomes and detects early pancreatic cancer. Nature. 2015;523:177–82.

    CAS  PubMed  PubMed Central  Google Scholar 

  24. 24.

    Lobb RJ, van Amerongen R, Wiegmans A, Ham S, Larsen JE, Möller A, et al. Exosomes derived from mesenchymal non-small cell lung cancer cells promote chemoresistance. Int J Cancer. 2017;141:614–20.

    CAS  PubMed  Google Scholar 

  25. 25.

    Xiao X, Yu S, Li S, Wu J, Ma R, Cao H, et al. Exosomes: decreased sensitivity of lung cancer A549 cells to cisplatin. PLoS ONE. 2014;9(2):e89534.

    PubMed  PubMed Central  Google Scholar 

  26. 26.

    Li XQ, Liu JT, Fan LL, Liu Y, Cheng L, Wang F, et al. Exosomes derived from gefitinib-treated EGFR-mutant lung cancer cells alter cisplatin sensitivity via up-regulating autophagy. Oncotarget. 2016;7:24585–95.

    PubMed  PubMed Central  Google Scholar 

  27. 27.

    Chen WX, Liu XM, Lv MM, Chen L, Zhao JH, Zhong SL, et al. Exosomes from drug-resistant breast cancer cells transmit chemoresistance by a horizontal transfer of microRNAs. PLoS ONE. 2014;16(9):e95240.

    Google Scholar 

  28. 28.

    Qu Z, Wu J, Wu J, Luo D, Jiang C, Ding Y, et al. Exosomes derived from HCC cells induce sorafenib resistance in hepatocellular carcinoma both in vivo and in vitro. J Exp Clin Cancer Res. 2016;35:159.

    PubMed  PubMed Central  Google Scholar 

  29. 29.

    Crow J, Atay S, Banskota S, Artale B, Schmitt S, Godwin AK, et al. Exosomes as mediators of platinum resistance in ovarian cancer. Oncotarget. 2017;8:11917–36.

    PubMed  PubMed Central  Google Scholar 

  30. 30.

    Falcone G, Felsani A, D’Agnano I. Signaling by exosomal microRNAs in cancer. J Exp Clin Cancer Res. 2015;34:32.

    PubMed  PubMed Central  Google Scholar 

  31. 31.

    Sato-Kuwabara Y, Melo S, Soares F, Calin GA. The fusion of two worlds: non-coding RNAs and extracellular vesicles-diagnostic and therapeutic implications. Int J Oncol. 2014;46:17–27.

    PubMed  PubMed Central  Google Scholar 

  32. 32.

    Falcone G, Felsani A, D’Agnano I. Signaling by exosomal microRNAs in cancer. J Exp Clin Can Res. 2015;34:32.

    Google Scholar 

  33. 33.

    Ohshima K, Inoue K, Fujiwara A, Hatakeyama K, Kanto K, Watanabe Y, et al. Let-7 MicroRNA family is selectively secreted into the extracellular environment via exosomes in a metastatic gastric cancer cell line. PLoS ONE. 2010;8:e13247.

    Google Scholar 

  34. 34.

    Kosaka N, Iguchi H, Hagiwara K, Yoshioka Y, Takeshita F, Ochiya T, et al. Neutral sphingomyelinase 2 (nSMase2)-dependent exosomal transfer of angiogenic microRNAs regulate cancer cell metastasis. J Biol Chem. 2013;288:10849–59.

    CAS  PubMed  PubMed Central  Google Scholar 

  35. 35.

    Bach DH, Hong JY, Park HJ, Lee SK. The role of exosomes and miRNAs in drug-resistance of cancer cells. Int J Cancer. 2017;14:220–30.

    Google Scholar 

  36. 36.

    Zhao L, Liu W, Xiao J, Cao B. The role of exosomes and "exosomal shuttle microRNA" in tumorigenesis and drug resistance. Cancer Lett. 2015;356:339–46.

    CAS  PubMed  Google Scholar 

  37. 37.

    Wu H, Zhou J, Mei S, Wu D, Mu Z, Chen B, et al. Circulating exosomal microRNA-96 promotes cell proliferation, migration and drug resistance by targeting LMO7. J Cell Mol Med. 2017;21:1228–366.

    CAS  PubMed  Google Scholar 

  38. 38.

    Qin X, Yu S, Zhou L, Shi M, Hu Y, Xu X, et al. Cisplatin-resistant lung cancer cell-derived exosomes increase cisplatin resistance of recipient cells in exosomal miR-100-5p-dependent manner. Int J Nanomed. 2017;12:3721–33.

    CAS  Google Scholar 

  39. 39.

    Yuwen DL, Sheng BB, Liu J, Wenyu W, Shu YQ. MiR-146a-5p level in serum exosomes predicts therapeutic effect of cisplatin in non-small cell lung cancer. Eur Rev Med Pharmacol Sci. 2017;21:2650–8.

    PubMed  Google Scholar 

  40. 40.

    Wei F, Ma C, Zhou T, Dong X, Luo Q, Geng L, et al. Exosomes derived from gemcitabine-resistant cells transfer malignant phenotypic traits via delivery of miRNA-222-3p. Mol Cancer. 2017;25(16):132.

    Google Scholar 

  41. 41.

    Gao Y, Fan X, Li W, Wang J, Liu Y, et al. miR-138-5p reverses gefitinib resistance in non-small cell lung cancer cells via negatively regulating G protein-coupled receptor 124. Biochem Biophys Res Commun. 2014;28(446):179–86.

    Google Scholar 

  42. 42.

    Shen H, Zhu F, Liu J, Xu T, Pei D, Wang R, et al. Alteration in Mir-21/PTEN expression modulates gefitinib resistance in non-small cell lung cancer. PLoS ONE. 2014;24(9):e103305.

    Google Scholar 

  43. 43.

    Cao M, Seike M, Soeno C, Mizutani H, Kitamura K, Minegishi Y, et al. MiR-23a regulates TGF-β-induced epithelial-mesenchymal transition by targeting E-cadherin in lung cancer cells. Int J Oncol. 2012;41:869–75.

    CAS  PubMed  PubMed Central  Google Scholar 

  44. 44.

    Jing C, Cao H, Qin X, Yu S, Wu J, Wang Z, et al. Exosome-mediated gefitinib resistance in lung cancer HCC827 cells via delivery of miR-21. Oncol Lett. 2018;15:9811–7.

    PubMed  PubMed Central  Google Scholar 

  45. 45.

    Mutlu M, Saatci Ö, Ansari SA, Yurdusev E, Shehwana H, Konu Ö, et al. miR-564 acts as a dual inhibitor of PI3K and MAPK signaling networks and inhibits proliferation and invasion in breast cancer. Sci Rep. 2016;6:32541. https://doi.org/10.1038/srep3254.

    CAS  Article  PubMed  PubMed Central  Google Scholar 

  46. 46.

    Wu Y, Wan X, Ji F, Song Z, Fang X. Serum miR-658 induces metastasis of gastric cancer by activating PAX3-MET pathway: a population-based study. Cancer Biomark. 2018;22:111–8.

    CAS  PubMed  Google Scholar 

  47. 47.

    Zhang L, Xia L, Zhao L, Chen Z, Shang X, Xin J, et al. Activation of PAX3-MET pathways due to miR-206 loss promotes gastric cancer metastasis. Carcinogenesis. 2015;36:390–9.

    PubMed  Google Scholar 

  48. 48.

    Nazarenko I, Rana S, Baumann A, McAlear J, Hellwig A, Trendelenburg M, et al. Cell surface tetraspanin Tspan8 contributes to molecular pathways of exosome-induced endothelial cell activation. Cancer Res. 2010;70:1668–78.

    CAS  PubMed  PubMed Central  Google Scholar 

  49. 49.

    Williams CM, García-Santos G, Ghajar C, Nitadori-Hoshino A, Hoffman C, Badal K, et al. Melanoma exosomes educate bone marrow progenitor cells toward a pro-metastatic phenotype through MET. Nat Med. 2012;18:883–91.

    PubMed  PubMed Central  Google Scholar 

  50. 50.

    Bobrie A, Krumeich S, Reyal F, Recchi C, Moita LF, Seabra MC, et al. Rab27a supports exosome-dependent and -independent mechanisms that modify the tumor microenvironment and can promote tumor progression. Cancer Res. 2012;72:4920–30.

    CAS  PubMed  Google Scholar 

  51. 51.

    Vester B, Wengel J. LNA (locked nucleic acid): high-affinity targeting of complementary RNA and DNA. Biochemistry. 2004;43:13233–411.

    CAS  PubMed  Google Scholar 

  52. 52.

    Elmén J, Lindow M, Schütz S, Lawrence M, Petri A, Obad S, et al. LNA-mediated microRNA silencing in non-human primates. Nature. 2008;452:896–9.

    PubMed  Google Scholar 

  53. 53.

    Koizumi F, Shimoyama T, Taguchi F, Saijo N, Nishio K. Establishment of a human non-small cell lung cancer cell line resistant to gefitinib. Int J Cancer. 2005;116:36–44.

    CAS  PubMed  Google Scholar 

Download references

Acknowledgements

We would like to thank Prof. Kazuto Nishio for providing valuable cell lines for us. We are also grateful to Prof. Akira Iyoda for helpful discussions and comments on the manuscript. This work was supported in part by the grants of Japan Surgical Society Young Researcher Award in 2016.

Author information

Affiliations

Authors

Corresponding author

Correspondence to Yoko Azuma.

Ethics declarations

Conflict of interest

The authors declare that they have no conflict of interest.

Additional information

Publisher's Note

Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Rights and permissions

Reprints and Permissions

About this article

Verify currency and authenticity via CrossMark

Cite this article

Azuma, Y., Yokobori, T., Mogi, A. et al. Cancer exosomal microRNAs from gefitinib-resistant lung cancer cells cause therapeutic resistance in gefitinib-sensitive cells. Surg Today 50, 1099–1106 (2020). https://doi.org/10.1007/s00595-020-01976-x

Download citation

Keywords

  • Lung cancer
  • Gefitinib resistance
  • Cell-to-cell interaction
  • Exosome
  • microRNAs