Skip to main content

Advertisement

Log in

Evolution of photodynamic medicine based on fluorescence image-guided diagnosis using indocyanine green and 5-aminolevulinic acid

  • Review Article
  • Published:
Surgery Today Aims and scope Submit manuscript

Abstract

New diagnostic techniques based on photodynamic medicine, such as near-infrared fluorescence using indocyanine green (NIR-ICG) and 5-aminolevulinic acid-mediated photodynamic diagnosis (ALA-PDD), are aiding navigation tasks across various fields of surgery. Specifically, NIR-ICG is being used for the intraoperative identification of sentinel lymph nodes or blood vessels in organ resection and for blood flow evaluation in surgery. These ICG-fluorescent imaging techniques could provide an additional and potentially valuable way to identify vascular and lymphatic structures in surrounding tissue. 5-Aminolevulinic acid is a precursor of a photosensitizing substance with affinity for tumors; thus, diagnostic laparoscopy using ALA-PDD in combination should improve the accuracy of detecting peritoneal dissemination in patients with advanced gastric cancer. The ability to overlay fluorescent imaging with conventional color images in real time using ALA-PDD and NIR with ICG would be of immense benefit to surgeons, providing good visualization and detection of target lesions not seen with the naked eye. A multi-center clinical study examining the safety and efficacy of ALA-PDD during laparoscopic examination for patients with advanced gastric cancer is currently underway in the form of doctor-initiated trials, and further verification studies will be conducted. Such imaging capability could have broad potential across cancer and vascular surgery.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6

Similar content being viewed by others

References

  1. Namikawa T, Sato T, Hanazaki K. Recent advances in near-infrared fluorescence-guided imaging surgery using indocyanine green. Surg Today. 2015;45:1467–74.

    CAS  PubMed  Google Scholar 

  2. Namikawa T, Yatabe T, Inoue K, Shuin T, Hanazaki K. Clinical applications of 5-aminolevulinic acid-mediated fluorescence for gastric cancer. World J Gastroenterol. 2015;21:8769–75.

    CAS  PubMed  PubMed Central  Google Scholar 

  3. Namikawa T, Fujisawa K, Munekage E, Iwabu J, Uemura S, Tsujii S, et al. Clinical application of photodynamic medicine technology using light-emitting fluorescence imaging based on a specialized luminous source. Med Mol Morphol. 2018;51:187–93.

    CAS  PubMed  Google Scholar 

  4. Handa T, Katare RG, Nishimori H, Wariishi S, Fukutomi T, Yamamoto M, et al. New device for intraoperative graft assessment: HyperEye charge-coupled device camera system. Gen Thorac Cardiovasc Surg. 2010;58:68–77.

    PubMed  Google Scholar 

  5. Handa T, Katare RG, Sasaguri S, Sato T. Preliminary experience for the evaluation of the intraoperative graft patency with real color charge-coupled device camera system: an advanced device for simultaneous capturing of color and near-infrared images during coronary artery bypass graft. Interact Cardiovasc Thorac Surg. 2009;9:150–4.

    PubMed  Google Scholar 

  6. Wilke H, Muro K, Van Cutsem E, Oh SC, Bodoky G, Shimada Y, et al. Ramucirumab plus paclitaxel versus placebo plus paclitaxel in patients with previously treated advanced gastric or gastro-oesophageal junction adenocarcinoma (RAINBOW): a double-blind, randomised phase 3 trial. Lancet Oncol. 2014;15:1224–355.

    CAS  PubMed  Google Scholar 

  7. Kitagawa H, Namikawa T, Munekage M, Akimori T, Kobayashi M, Hanazaki K. Visualization of the stomach's arterial networks during esophageal surgery using the HyperEye Medical System. Anticancer Res. 2015;35:6201–5.

    CAS  PubMed  Google Scholar 

  8. Hokimoto N, Sugimoto T, Namikawa T, Funakoshi T, Oki T, Ogawa M, et al. A novel color fluorescence navigation system for intraoperative transcutaneous lymphatic mapping and resection of sentinel lymph nodes in breast cancer: comparison with the combination of gamma probe scanning and visible dye methods. Oncology. 2018;94:99–106.

    CAS  PubMed  Google Scholar 

  9. Kitagawa H, Namikawa T, Iwabu J, Fujisawa K, Uemura S, Tsuda S, et al. Assessment of the blood supply using the indocyanine green fluorescence method and postoperative endoscopic evaluation of anastomosis of the gastric tube during esophagectomy. Surg Endosc. 2018;32:1749–54.

    PubMed  Google Scholar 

  10. Namikawa T, Uemura S, Kondo N, Yamamoto M, Maeda H, Nishimori H, et al. Successful preservation of the mesenteric and bowel circulation with treatment for a ruptured superior mesenteric artery aneurysm using the HyperEye Medical System. Am Surg. 2014;80:E359–E361361.

    PubMed  Google Scholar 

  11. Yamamoto M, Orihashi K, Nishimori H, Handa T, Kondo N, Fukutomi T, et al. Efficacy of intraoperative HyperEye Medical System angiography for coronary artery bypass grafting. Surg Today. 2015;45:966–72.

    PubMed  Google Scholar 

  12. Yamamoto M, Sasaguri S, Sato T. Assessing intraoperative blood flow in cardiovascular surgery. Surg Today. 2011;41:1467–74.

    PubMed  Google Scholar 

  13. Yamamoto M, Orihashi K, Nishimori H, Wariishi S, Fukutomi T, Kondo N, et al. Indocyanine green angiography for intra-operative assessment in vascular surgery. Eur J Vasc Endovasc Surg. 2012;43:426–32.

    CAS  PubMed  Google Scholar 

  14. Yamamoto M, Ninomiya H, Tashiro M, Sato T, Handa T, Inoue K, et al. Evaluation of graft anastomosis using time-intensity curves and quantitative near-infrared fluorescence angiography during peripheral arterial bypass grafting. J Artif Organs. 2018;22:160–8 (Epub ahead of print).

    PubMed  Google Scholar 

  15. van den Bos J, Jongen ACHM, Melenhorst J, Breukink SO, Lenaerts K, Schols RM, et al. Near-infrared fluorescence image-guidance in anastomotic colorectal cancer surgery and its relation to serum markers of anastomotic leakage: a clinical pilot study. Surg Endosc. 2019. https://doi.org/10.1007/s00464-019-06673-6(Epub ahead of print).

    Article  PubMed  PubMed Central  Google Scholar 

  16. Buddingh KT, Nieuwenhuijs VB, van Buuren L, Hulscher JB, de Jong JS, van Dam GM. Intraoperative assessment of biliary anatomy for prevention of bile duct injury: a review of current and future patient safety interventions. Surg Endosc. 2011;25:2449–611.

    PubMed  PubMed Central  Google Scholar 

  17. Ishizawa T, Bandai Y, Ijichi M, Kaneko J, Hasegawa K, Kokudo N. Fluorescent cholangiography illuminating the biliary tree during laparoscopic cholecystectomy. Br J Surg. 2010;97:1369–77.

    CAS  PubMed  Google Scholar 

  18. Pesce A, Piccolo G, La Greca G, Puleo S. Utility of fluorescent cholangiography during laparoscopic cholecystectomy: a systematic review. World J Gastroenterol. 2015;21:7877–83.

    PubMed  PubMed Central  Google Scholar 

  19. Kono Y, Ishizawa T, Tani K, Harada N, Kaneko J, Saiura A, et al. Techniques of fluorescence cholangiography during laparoscopic cholecystectomy for better delineation of the bile duct anatomy. Medicine (Baltimore). 2015;94:e1005.

    Google Scholar 

  20. Liu YY, Liao CH, Diana M, Wang SY, Kong SH, Yeh CN, et al. Near-infrared cholecystocholangiography with direct intragallbladder indocyanine green injection: preliminary clinical results. Surg Endosc. 2018;32:1506–14.

    PubMed  Google Scholar 

  21. Terasawa M, Ishizawa T, Mise Y, Inoue Y, Ito H, Takahashi Y, et al. Applications of fusion-fluorescence imaging using indocyanine green in laparoscopic hepatectomy. Surg Endosc. 2017;31:5111–8.

    PubMed  Google Scholar 

  22. Nomi T, Hokuto D, Yoshikawa T, Matsuo Y, Sho M. A novel navigation for laparoscopic anatomic liver resection using indocyanine green fluorescence. Ann Surg Oncol. 2018;25:3982.

    PubMed  Google Scholar 

  23. Ueno M, Hayami S, Sonomura T, Tanaka R, Kawai M, Hirono S, et al. Indocyanine green fluorescence imaging techniques and interventional radiology during laparoscopic anatomical liver resection (with video). Surg Endosc. 2018;32:1051–5.

    PubMed  Google Scholar 

  24. Marano A, Priora F, Lenti LM, Ravazzoni F, Quarati R, Spinoglio G. Application of fluorescence in robotic general surgery: review of the literature and state of the art. World J Surg. 2013;37:2800–11.

    PubMed  Google Scholar 

  25. Maker AV, Kunda N. A technique to define extrahepatic biliary anatomy using robotic near-infrared fluorescent cholangiography. J Gastrointest Surg. 2017;21:1961–2.

    PubMed  Google Scholar 

  26. Spinoglio G, Priora F, Bianchi PP, Lucido FS, Licciardello A, Maglione V, et al. Real-time near-infrared (NIR) fluorescent cholangiography in single-site robotic cholecystectomy (SSRC): a single-institutional prospective study. Surg Endosc. 2013;27:2156–62.

    PubMed  Google Scholar 

  27. Boni L, Fingerhut A, Marzorati A, Rausei S, Dionigi G, Cassinotti E. Indocyanine green fluorescence angiography during laparoscopic low anterior resection: results of a case-matched study. Surg Endosc. 2017;31:1836–40.

    PubMed  Google Scholar 

  28. Boni L, David G, Dionigi G, Rausei S, Cassinotti E, Fingerhut A. Indocyanine green-enhanced fluorescence to assess bowel perfusion during laparoscopic colorectal resection. Surg Endosc. 2016;30:2736–42.

    PubMed  Google Scholar 

  29. Wada T, Kawada K, Takahashi R, Yoshitomi M, Hida K, Hasegawa S, et al. ICG fluorescence imaging for quantitative evaluation of colonic perfusion in laparoscopic colorectal surgery. Surg Endosc. 2017;31:4184–93.

    PubMed  Google Scholar 

  30. Watanabe J, Ishibe A, Suwa Y, Suwa H, Ota M, Kunisaki C, et al. Indocyanine green fluorescence imaging to reduce the risk of anastomotic leakage in laparoscopic low anterior resection for rectal cancer: a propensity score-matched cohort study. Surg Endosc. 2019. https://doi.org/10.1007/s00464-019-06751-9.

    Article  PubMed  Google Scholar 

  31. Liberale G, Vankerckhove S, Caldon MG, Ahmed B, Moreau M, Nakadi IE, et al. Fluorescence imaging after indocyanine green injection for detection of peritoneal metastases in patients undergoing cytoreductive surgery for peritoneal carcinomatosis from colorectal cancer: a pilot study. Ann Surg. 2016;264:1110–5.

    PubMed  Google Scholar 

  32. Nakaseko Y, Ishizawa T, Saiura A. Fluorescence-guided surgery for liver tumors. J Surg Oncol. 2018;118:324–31.

    PubMed  Google Scholar 

  33. Baiocchi GL, Diana M, Boni L. Indocyanine green-based fluorescence imaging in visceral and hepatobiliary and pancreatic surgery: state of the art and future directions. World J Gastroenterol. 2018;24:2921–30.

    PubMed  PubMed Central  Google Scholar 

  34. Peyrat P, Blanc E, Guillermet S, Chen Y, Ferlay C, Perol D, et al. HEPATOFLUO: a prospective monocentric study assessing the benefits of indocyanine green (ICG) fluorescence for hepatic surgery. J Surg Oncol. 2018;117:922–7.

    PubMed  Google Scholar 

  35. Ishizawa T, Fukushima N, Shibahara J, Masuda K, Tamura S, Aoki T, et al. Real-time identification of liver cancers by using indocyanine green fluorescent imaging. Cancer. 2009;115:2491–504.

    PubMed  Google Scholar 

  36. Gotoh K, Yamada T, Ishikawa O, Takahashi H, Eguchi H, Yano M, et al. A novel image-guided surgery of hepatocellular carcinoma by indocyanine green fluorescence imaging navigation. J Surg Oncol. 2009;100:75–9.

    PubMed  Google Scholar 

  37. Alfano MS, Molfino S, Benedicenti S, Molteni B, Porsio P, Arici E, et al. Intraoperative ICG-based imaging of liver neoplasms: a simple yet powerful tool. Preliminary results. Surg Endosc. 2018;33:126–34 (Epub ahead of print).

    PubMed  Google Scholar 

  38. Ishizawa T, Masuda K, Urano Y, Kawaguchi Y, Satou S, Kaneko J, et al. Mechanistic background and clinical applications of indocyanine green fluorescence imaging of hepatocellular carcinoma. Ann Surg Oncol. 2014;21:440–8.

    PubMed  Google Scholar 

  39. Harada N, Ishizawa T, Muraoka A, Ijichi M, Kusaka K, Shibasaki M, et al. Fluorescence navigation hepatectomy by visualization of localized cholestasis from bile duct tumor infiltration. J Am Coll Surg. 2010;210:e2–6.

    PubMed  Google Scholar 

  40. Ishizawa T, Zuker NB, Kokudo N, Gayet B. Positive and negative staining of hepatic segments by use of fluorescent imaging techniques during laparoscopic hepatectomy. Arch Surg. 2012;147:393–4.

    PubMed  Google Scholar 

  41. Tsuda T, Kaibori M, Hishikawa H, Nakatake R, Okumura T, Ozeki E, et al. Near-infrared fluorescence imaging and photodynamic therapy with indocyanine green lactosome has antineoplastic effects for hepatocellular carcinoma. PLoS O ne. 2017;12:e0183527.

    Google Scholar 

  42. Handgraaf HJM, Boogerd LSF, Höppener DJ, Peloso A, Sibinga Mulder BG, Hoogstins CES, et al. Long-term follow-up after near-infrared fluorescence-guided resection of colorectal liver metastases: a retrospective multicenter analysis. Eur J Surg Oncol. 2017;43:1463–71.

    CAS  PubMed  PubMed Central  Google Scholar 

  43. Inoue K, Fukuhara H, Shimamoto T, Kamada M, Iiyama T, Miyamura M, et al. Comparison between intravesical and oral administration of 5-aminolevulinic acid in the clinical benefit of photodynamic diagnosis for nonmuscle invasive bladder cancer. Cancer. 2012;118:1062–74.

    CAS  PubMed  Google Scholar 

  44. Namikawa T, Inoue K, Uemura S, Shiga M, Maeda H, Kitagawa H, et al. Photodynamic diagnosis using 5-aminolevulinic acid during gastrectomy for gastric cancer. J Surg Oncol. 2014;109:213–7.

    CAS  PubMed  Google Scholar 

  45. Inoue K, Karashima T, Kamada M, Shuin T, Kurabayashi A, Furihata M, et al. Regulation of 5-aminolevulinic acid-mediated protoporphyrin IX accumulation in human urothelial carcinomas. Pathobiology. 2009;76:303–14.

    CAS  PubMed  Google Scholar 

  46. Fisher CJ, Niu C, Foltz W, Chen Y, Sidorova-Darmos E, Eubanks JH, et al. ALA-PpIX mediated photodynamic therapy of malignant gliomas augmented by hypothermia. PLoS O ne. 2017;12:e0181654.

    Google Scholar 

  47. Teng L, Nakada M, Zhao SG, Endo Y, Furuyama N, Nambu E, et al. Silencing of ferrochelatase enhances 5-aminolevulinic acid-based fluorescence and photodynamic therapy efficacy. Br J Cancer. 2011;104:798–807.

    CAS  PubMed  PubMed Central  Google Scholar 

  48. Fukuhara H, Inoue K, Satake H, Tamura K, Karashima T, Yamasaki I, et al. Photodynamic diagnosis of positive margin during radical prostatectomy: preliminary experience with 5-aminolevulinic acid. Int J Urol. 2011;18:585–91.

    CAS  PubMed  Google Scholar 

  49. Inoue K, Fukuhara H, Kurabayashi A, Furihata M, Tsuda M, Nagakawa K, et al. Photodynamic therapy involves an antiangiogenic mechanism and is enhanced by ferrochelatase inhibitor in urothelial carcinoma. Cancer Sci. 2013;104:765–72.

    CAS  PubMed  Google Scholar 

  50. Kishi K, Fujiwara Y, Yano M, Motoori M, Sugimura K, Takahashi H, et al. Usefulness of diagnostic laparoscopy with 5-aminolevulinic acid (ALA)-mediated photodynamic diagnosis for the detection of peritoneal micrometastasis in advanced gastric cancer after chemotherapy. Surg Today. 2016;46:1427–34.

    CAS  PubMed  Google Scholar 

  51. Motoori M, Yano M, Tanaka K, Kishi K, Takahashi H, Inoue M, et al. Intraoperative photodynamic diagnosis of lymph node metastasis in esophageal cancer patients using 5-aminolevulinic acid. Oncol Lett. 2015;10:3035–9.

    CAS  PubMed  PubMed Central  Google Scholar 

  52. Ushimaru Y, Fujiwara Y, Kishi K, Sugimura K, Omori T, Moon JH, et al. Prognostic significance of basing treatment strategy on the results of photodynamic diagnosis in advanced gastric cancer. Ann Surg Oncol. 2017;24:983–9.

    PubMed  Google Scholar 

  53. Kishi K, Fujiwara Y, Yano M, Motoori M, Sugimura K, Ohue M, et al. Diagnostic laparoscopy with 5-aminolevulinic-acid-mediated photodynamic diagnosis enhances the detection of peritoneal micrometastases in advanced gastric cancer. Oncology. 2014;87:257–65.

    CAS  PubMed  Google Scholar 

  54. Kishi K, Fujiwara Y, Yano M, Inoue M, Miyashiro I, Motoori M, et al. Staging laparoscopy using ALA-mediated photodynamic diagnosis improves the detection of peritoneal metastases in advanced gastric cancer. J Surg Oncol. 2012;106:294–8.

    CAS  PubMed  Google Scholar 

  55. Murayama Y, Ichikawa D, Koizumi N, Komatsu S, Shiozaki A, Kuriu Y, et al. Staging fluorescence laparoscopy for gastric cancer by using 5-aminolevulinic acid. Anticancer Res. 2012;32:5421–7.

    CAS  PubMed  Google Scholar 

  56. Hara H, Takahashi T, Nakatsuka R, Higashi S, Naka T, Sumiyama K, et al. A novel approach of optical biopsy using probe-based confocal laser endomicroscopy for peritoneal metastasis. Surg Endosc. 2016;30:3437–46.

    PubMed  Google Scholar 

  57. Kang YK, Boku N, Satoh T, Ryu MH, Chao Y, Kato K, et al. Nivolumab in patients with advanced gastric or gastro-oesophageal junction cancer refractory to, or intolerant of, at least two previous chemotherapy regimens (ONO-4538-12, ATTRACTION-2): a randomised, double-blind, placebo-controlled, phase 3 trial. Lancet. 2017;390:2461–71.

    CAS  PubMed  Google Scholar 

  58. Fuchs CS, Tomasek J, Yong CJ, Dumitru F, Passalacqua R, Goswami C, et al. Ramucirumab monotherapy for previously treated advanced gastric or gastro-oesophageal junction adenocarcinoma (REGARD): an international, randomised, multicentre, placebo-controlled, phase 3 trial. Lancet. 2014;383:31–9.

    CAS  PubMed  Google Scholar 

  59. Koizumi N, Harada Y, Beika M, Minamikawa T, Yamaoka Y, Dai P, et al. Highly sensitive fluorescence detection of metastatic lymph nodes of gastric cancer with photo-oxidation of protoporphyrin IX. Eur J Surg Oncol. 2016;42:1236–46.

    CAS  PubMed  Google Scholar 

  60. Koizumi N, Harada Y, Murayama Y, Harada K, Beika M, Yamaoka Y, et al. Detection of metastatic lymph nodes using 5-aminolevulinic acid in patients with gastric cancer. Ann Surg Oncol. 2013;20:3541–8.

    PubMed  Google Scholar 

  61. Nakamura T, Oinuma T, Yamagishi H, Masuyama H, Terano A. Evaluation of a novel high-resolution magnifying videoendoscope that is capable of photodynamic diagnosis and therapy for gastric cancer. Photodiagnosis Photodyn Ther. 2015;12:115–22.

    PubMed  Google Scholar 

  62. Isomoto H, Nanashima A, Senoo T, Ogiwara K, Hashisako M, Ohnita K, et al. In vivo fluorescence navigation of gastric and upper gastrointestinal tumors by 5-aminolevulinic acid mediated photodynamic diagnosis with a laser-equipped video image endoscope. Photodiagnosis Photodyn Ther. 2015;12:201–8.

    CAS  PubMed  Google Scholar 

  63. Koizumi N, Harada Y, Minamikawa T, Tanaka H, Otsuji E, Takamatsu T. Recent advances in photodynamic diagnosis of gastric cancer using 5-aminolevulinic acid. World J Gastroenterol. 2016;22:1289–96.

    CAS  PubMed  PubMed Central  Google Scholar 

  64. Ogihara K, Isomoto H, Kurumi H, Kanda T, Hashisako M, Tabata K, et al. Expression of coproporphyrinogen oxidase is associated with detection of upper gastrointestinal carcinomas by 5-aminolevulinic acid-mediated photodynamic diagnosis. Photodiagnosis Photodyn Ther. 2017;19:15–211.

    CAS  PubMed  Google Scholar 

  65. Kurumi H, Kanda T, Kawaguchi K, Yashima K, Koda H, Ogihara K, et al. Protoporphyrinogen oxidase is involved in the fluorescence intensity of 5-aminolevulinic acid-mediated laser-based photodynamic endoscopic diagnosis for early gastric cancer. Photodiagnosis Photodyn Ther. 2018;22:79–85.

    CAS  PubMed  Google Scholar 

Download references

Funding

None.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Tsutomu Namikawa.

Ethics declarations

Conflict of interest

The authors declare that they have no competing interest.

Additional information

Publisher's Note

Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Namikawa, T., Iwabu, J., Munekage, M. et al. Evolution of photodynamic medicine based on fluorescence image-guided diagnosis using indocyanine green and 5-aminolevulinic acid. Surg Today 50, 821–831 (2020). https://doi.org/10.1007/s00595-019-01851-4

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s00595-019-01851-4

Keywords

Navigation