A liquid biopsy in primary lung cancer

Abstract

A tissue biopsy is the “golden standard” for molecular profiling that is essential in decision-making regarding treatment for malignant tumors, including primary lung cancer. However, tumor biopsies are associated with several limitations, including invasiveness and difficulty in achieving access. Liquid biopsies have several potential advantages over tissue biopsies, and recent advances in molecular technologies have enabled liquid biopsies to be introduced into daily clinical practice. Cell-free blood-based liquid biopsies to detect mutations in the epidermal growth factor receptor (EGFR) gene in the plasma have been approved and may be useful in selecting patients for treatment with tyrosine kinase inhibitors of EGFR. We herein describe blood-based liquid biopsies and review the current status and future perspectives of plasma genotyping in primary lung cancer.

This is a preview of subscription content, log in to check access.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5

References

  1. 1.

    Torre LA, Bray F, Siegel RL, Ferlay J, Lortet-Tieulent J, Jemal A. Global cancer statistics, 2012. CA Cancer J Clin. 2015;65:87–108.

    Article  Google Scholar 

  2. 2.

    Herbst RS, Heymach JV, Lippman SM. Lung cancer. N Engl J Med. 2008;359:1367–80.

    CAS  Article  Google Scholar 

  3. 3.

    Rudin CM, Ismaila N, Hann CL, Malhotra N, Movsas B, Norris K, et al. Treatment of small-cell lung cancer: American Society of Clinical Oncology endorsement of the American College of Chest Physicians guideline. J Clin Oncol. 2015;33:4106–11.

    CAS  Article  Google Scholar 

  4. 4.

    Bunn PA Jr, Minna JD, Augustyn A, Bunn PA Jr, Minna JD, Augustyn A, et al. Small cell lung cancer: can recent advances in biology and molecular biology be translated into improved outcomes?. J Thorac Oncol. 2016;11:453–74.

    Article  Google Scholar 

  5. 5.

    Non-Small Cell Lung Cancer Collaborative Group. Chemotherapy and supportive care versus supportive care alone for advanced non-small cell lung cancer. Cochrane Database Syst Rev 2010;12(5):CD007309.

    Google Scholar 

  6. 6.

    Hanahan D, Weingberg RA. Hallmarks of cancer: the next generation. Cell. 2011;144:646–74.

    Article  Google Scholar 

  7. 7.

    Swanton C, Govindan R. Clinical implications of genomic discoveries in lung cancer. N Engl J Med. 2016;374:1864–73.

    CAS  Article  Google Scholar 

  8. 8.

    Hirsch FR, Scagliotti GV, Mulshine JL, Kwon R, Curran WJ Jr, Wu YL, et al. Lung cancer: current therapies and new targeted treatments. Lancet. 2017;389:299–311.

    CAS  Article  Google Scholar 

  9. 9.

    Hanna N, Johnson D, Temin S, Baker S Jr, Brahmer J, Ellis PM, et al. Systemic therapy for stage IV non-small-cell lung cancer: American Society of Clinical Oncology Clinical practice guideline update. J Clin Oncol. 2017;35:3484–515.

    Google Scholar 

  10. 10.

    Yoneda K, Tanaka F. Molecular diagnosis and targeting for lung cancer. In: Shinomiya N, Kataoka H, Shimada Y, editors. Molecular diagnosis and targeting for thoracic and gastrointestinal malignancy. Singapore: Springer; 2018. pp. 1–32.

    Google Scholar 

  11. 11.

    Saito M, Shiraishi K, Kunitoh H, Takenoshita S, Yokota J, Kohno T. Gene aberrations for precision medicine against lung adenocarcinoma. Cancer Sci. 2016;107:713–20.

    CAS  Article  Google Scholar 

  12. 12.

    Barlesi F, Mazieres J, Merlio JP, Debieuvre D, Mosser J, Lena H, et al. Routine molecular profiling of patients with advanced non-small-cell lung cancer: results of a 1-year nationwide programme of the French Cooperative Thoracic Intergroup (IFCT). Lancet. 2016;387:1415–26.

    CAS  Article  Google Scholar 

  13. 13.

    Siravegna G, Marsoni S, Siena S, Bardelli A. Integrating liquid biopsies into the management of cancer. Nat Rev Clin Oncol 2017;14:531–48.

    CAS  Article  Google Scholar 

  14. 14.

    Sacher AG, Komatsubara KM, Oxnard GR. Application of plasma genotyping technologies in non-small cell lung cancer: a practical review. J Thorac Oncol. 2017;12:1344–56.

    Article  Google Scholar 

  15. 15.

    Diaz LA Jr, Bardelli A. Liquid biopsies: genotyping circulating tumor DNA. J Clin Oncol. 2014;32:579–86.

    Article  Google Scholar 

  16. 16.

    Heitzer E, Ulz P, Geigl JB. Circulating tumor DNA as a liquid biopsy for cancer. Clin Chem. 2015;61:112–23.

    CAS  Article  Google Scholar 

  17. 17.

    Tanaka F, Yoneda K. Adjuvant therapy following surgery in non-small cell lung cancer (NSCLC). Surg Today. 2016;46:25–37.

    CAS  Article  Google Scholar 

  18. 18.

    Wan JCM, Massie C, Garcia-Corbacho J, Mouliere F, Brenton JD, Caldas C, et al. Liquid biopsies come of age: towards implementation of circulating tumour DNA. Nat Rev Cancer. 2017;17:223–38.

    Article  Google Scholar 

  19. 19.

    Zhang W, Xia W, Lv Z, Ni C, Xin Y, Yang L. Liquid biopsy for cancer: circulating tumor cells, circulating free DNA or exosomes? Cell Physiol Biochem. 2017;41:755–68.

    CAS  Article  Google Scholar 

  20. 20.

    Wang J, Chang S, Li G, Sun Y. Application of liquid biopsy in precision medicine: opportunities and challenges. Front Med. 2017;11:522–7.

    Article  Google Scholar 

  21. 21.

    Riethdorf S, O’Flaherty L, Hille C, Pantel K. Clinical applications of the CellSearch platform in cancer patients. Adv Drug Deliv Rev. 2018. https://doi.org/10.1016/j.addr.2018.01.011 (pii: S0169-409X(18)30011-5).

    Article  PubMed  Google Scholar 

  22. 22.

    Allard WJ, Matera J, Miller MC, Repollet M, Connelly MC, Rao C, et al. Tumor cells circulate in the peripheral blood of all major carcinomas but not in healthy or patients with nonmalignant diseases. Clin Cancer Res. 2004;10:6897–904.

    Article  Google Scholar 

  23. 23.

    Tanaka F, Yoneda K, Kondo N, Hashimoto M, Takuwa T, Matsumoto S, et al. Circulating tumor cell as a diagnostic marker in primary lung cancer. Clin Cancer Res. 2009;15:6980–6.

    CAS  Article  Google Scholar 

  24. 24.

    Naito T, Tanaka F, Ono A, Yoneda K, Takahashi T, Murakami H, et al. Prognostic impact of circulating tumor cells in patients with small cell lung cancer. J Thorac Oncol. 2012;7:512–9.

    Article  Google Scholar 

  25. 25.

    Diehl F, Schmidt K, Choti MA, Romans K, Goodman S, Li M, et al. Circulating mutant DNA to assess tumor dynamics. Nat Med. 2008;14:985–90.

    CAS  Article  Google Scholar 

  26. 26.

    Holdhoff M, Schmidt K, Donehower R, Diaz LA Jr. Analysis of circulating tumor DNA to confirm somatic KRAS mutations. J Natl Cancer Inst. 2009;101:1284–5.

    Article  Google Scholar 

  27. 27.

    Thierry AR, El Messaoudi S, Gahan PB, Anker P, Stroun M. Origins, structures, and functions of circulating DNA in oncology. Cancer Metastasis Rev. 2016;35:347–76.

    CAS  Article  Google Scholar 

  28. 28.

    El Messaoudi S, Rolet F, Mouliere F, Thierry AR. Circulating cell free DNA: preanalytical considerations. Clin Chim Acta. 2013;424:222–30.

    Article  Google Scholar 

  29. 29.

    Normanno N, Denis MG, Thress KS, Ratcliffe M, Reck M. Guide to detecting epidermal growth factor receptor (EGFR) mutations in ctDNA of patients with advanced non-small-cell lung cancer. Oncotarget. 2017;8:12501–16.

    Article  Google Scholar 

  30. 30.

    Garcia J, Dusserre E, Cheynet V, Bringuier PP, Brengle-Pesce K, Wozny AS, et al. Evaluation of pre-analytical conditions and comparison of the performance of several digital PCR assays for the detection of major EGFR mutations in circulating DNA from non-small cell lung cancers: the CIRCAN_0 study. Oncotarget. 2017;8:87980–96.

    Article  Google Scholar 

  31. 31.

    Vallée A, Marcq M, Bizieux A, Kouri CE, Lacroix H, Bennouna J, et al. Plasma is a better source of tumor-derived circulating cell-free DNA than serum for the detection of EGFR alterations in lung tumor patients. Lung Cancer. 2013;82:373–4.

    Article  Google Scholar 

  32. 32.

    Li X, Ren R, Ren S, Chen X, Cai W, Zhou F, et al. Peripheral blood for epidermal growth factor receptor mutation detection in non-small cell lung cancer patients. Transl Oncol. 2014;7:341–8.

    Article  Google Scholar 

  33. 33.

    Luo J, Shen L, Zheng D. Diagnostic value of circulating free DNA for the detection of EGFR mutation status in NSCLC: a systematic review and meta-analysis. Sci Rep. 2014;4:6269.

    CAS  Article  Google Scholar 

  34. 34.

    Reck M, Hagiwara K, Han B, Tjulandin S, Grohé C, Yokoi T, et al. ctDNA Determination of EGFR mutation status in European and Japanese patients with advanced NSCLC: the ASSESS study. J Thorac Oncol. 2016;11:1682–9.

    Article  Google Scholar 

  35. 35.

    Pinheiro LB, Coleman VA, Hindson CM, Herrmann J, Hindson BJ, Bhat S, et al. Evaluation of a droplet digital polymerase chain reaction format for DNA copy number quantification. Anal Chem. 2012;84:1003–11.

    CAS  Article  Google Scholar 

  36. 36.

    Oxnard GR, Paweletz CP, Kuang Y, Mach SL, O’Connell A, Messineo MM, et al. Noninvasive detection of response and resistance in EGFR‑mutant lung cancer using quantitative next‑generation genotyping of cell‑free plasma DNA. Clin Cancer Res. 2014;20:1698–705.

    Article  Google Scholar 

  37. 37.

    Dressman D, Yan H, Traverso G, Kinzler KW, Vogelstein B. Transforming single DNA molecules into fluorescent magnetic particles for detection and enumeration of genetic variations. Proc Natl Acad Sci USA. 2003;100:8817–22.

    CAS  Article  Google Scholar 

  38. 38.

    Li M, Diehl F, Dressman D, Vogelstein B, Kinzler KW. BEAMing up for detection and quantification of rare sequence variants. Nat Methods. 2006;3:95–7.

    Article  Google Scholar 

  39. 39.

    Yohe S, Thyagarajan B. Review of clinical next-generation sequencing. Arch Pathol Lab Med. 2017;141:1544–57.

    Article  Google Scholar 

  40. 40.

    Vendrell JA, Grand D, Rouquette I, Costes V, Icher S, Selves J, et al. High-throughput detection of clinically targetable alterations using next-generation sequencing. Oncotarget. 2017;8:40345–58.

    Article  Google Scholar 

  41. 41.

    Vendrell JA, Mau-Them FT, Béganton B, Godreuil S, Coopman P, Solassol J. Circulating cell free tumor DNA detection as a routine tool for lung cancer patient management. Int J Mol Sci. 2017;18:E264.

    Article  Google Scholar 

  42. 42.

    Newman AM, Bratman SV, To J, Wynne JF, Eclov NC, Modlin LA, et al. An ultrasensitive method for quantitating circulating tumor DNA with broad patient coverage. Nat Med. 2014;20:548–54.

    Article  Google Scholar 

  43. 43.

    Lanman RB, Mortimer SA, Zill OA, Sebisanovic D, Lopez R, Blau S, et al. Analytical and clinical validation of a digital sequencing panel for quantitative, highly accurate evaluation of cell-free circulating tumor DNA. PLoS One. 2015;10:e0140712.

    Article  Google Scholar 

  44. 44.

    Qiu M, Wang J, Xu Y, Ding X, Li M, Jiang F, et al. Circulating tumor DNA is effective for the detection of EGFR mutation in non-small cell lung cancer: a meta-analysis. Cancer Epidemiol Biomark Prev. 2015;24:206–12.

    Article  Google Scholar 

  45. 45.

    Kim E, Feldman R, Wistuba II. Update on EGFR mutational testing and the potential of noninvasive liquid biopsy in non-small-cell lung cancer. Clin Lung Cancer. 2017. https://doi.org/10.1016/j.cllc.2017.08.001 (pii: S1525-7304(17)30229-2).

    Article  PubMed  PubMed Central  Google Scholar 

  46. 46.

    Singh AP, Li S, Cheng H. Circulating DNA in EGFR-mutated lung cancer. Ann Transl Med. 2017;5:379.

    Article  Google Scholar 

  47. 47.

    Duréndez-Sáez E, Azkárate A, Meri M, Calabuig-Fariñas S, Aguilar-Gallardo C, Blasco A, et al. New insights in non-small-cell lung cancer: circulating tumor cells and cell-free DNA. J Thorac Dis. 2017;9(Suppl 13):S1332-45.

    Google Scholar 

  48. 48.

    Bai H, Mao L, Wang HS, Zhao J, Yang L, An TT, et al. Epidermal growth factor receptor mutations in plasma DNA samples predict tumor response in Chinese patients with stages IIIB to IV non-small-cell lung cancer. J Clin Oncol. 2009;27:2653–9.

    CAS  Article  Google Scholar 

  49. 49.

    Brevet M, Johnson ML, Azzoli CG, Ladanyi M. Detection of EGFR mutations in plasma DNA from lung cancer patients by mass spectrometry genotyping is predictive of tumor EGFR status and response to EGFR inhibitors. Lung Cancer. 2011;73:96–102.

    Article  Google Scholar 

  50. 50.

    Hu C, Liu X, Chen Y, Sun X, Gong Y, Geng M, et al. Direct serum and tissue assay for EGFR mutation in non-small cell lung cancer by high-resolution melting analysis. Oncol Rep. 2012;28:1815–21.

    CAS  Article  Google Scholar 

  51. 51.

    Kim HR, Lee SY, Hyun DS, Lee MK, Lee HK, Choi CM, et al. Detection of EGFR mutations in circulating free DNA by PNA‑mediated PCR clamping. J Exp Clin Cancer Res. 2013;32:50.

    CAS  Article  Google Scholar 

  52. 52.

    Karachaliou N, Mayo-de las Casas C, Queralt C, de Aguirre I, Melloni B, Cardenal F, et al. Association of EGFR L858R mutation in circulating free DNA with survival in the EURTAC trial. JAMA Oncol. 2015;1:149–57.

    Article  Google Scholar 

  53. 53.

    Kimura H, Suminoe M, Kasahara K, Sone T, Araya T, Tamori S, et al. Evaluation of epidermal growth factor receptor mutation status in serum DNA as a predictor of response to gefitinib (IRESSA). Br J Cancer 2007;97:778–84.

    Article  Google Scholar 

  54. 54.

    Goto K, Ichinose Y, Ohe Y, Yamamoto N, Negoro S, Nishio K, et al. Epidermal growth factor receptor mutation status in circulating free DNA in serum: From IPASS, a phase III study of gefitinib or carboplatin/paclitaxel in non‑small cell lung cancer. J Thorac Oncol 2012;7:115–21.

    Article  Google Scholar 

  55. 55.

    Douillard JY, Ostoros G, Cobo M, Ciuleanu T, Cole R, McWalter G, et al. Gefitinib treatment in EGFR mutated Caucasian NSCLC: Circulating‑free tumor DNA as a surrogate for determination of EGFR status. J Thorac Oncol 2014;9:1345–53.

    Google Scholar 

  56. 56.

    Wu YL, Sequist LV, Hu CP, Feng J, Lu S, Huang Y, et al. EGFR mutation detection in circulating cell-free DNA of lung adenocarcinoma patients: analysis of LUX-Lung 3 and 6. Br J Cancer. 2017;116:175–85.

    Article  Google Scholar 

  57. 57.

    Weber B, Meldgaard P, Hager H, Wu L, Wei W, Tsai J, et al. Detection of EGFR mutations in plasma and biopsies from non-small cell lung cancer patients by allele-specific PCR assays. BMC Cancer. 2014;14:294.

    Article  Google Scholar 

  58. 58.

    Mok T, Wu YL, Lee JS, Yu CJ, Sriuranpong V, Sandoval-Tan J, et al. Detection and dynamic changes of EGFR mutations from circulating tumor DNA as a predictor of survival outcomes in NSCLC patients treated with first-line intercalated erlotinib and chemotherapy. Clin Cancer Res. 2015;21:3196–203.

    Article  Google Scholar 

  59. 59.

    Reckamp KL, Melnikova VO, Karlovich C, Sequist LV, Camidge DR, Wakelee H, et al. A highly sensitive and quantitative test platform for detection of NSCLC EGFR mutations in urine and plasma. J Thorac Oncol. 2016;11:1690–700.

    Article  Google Scholar 

  60. 60.

    US Food and Drug Administration. cobas EGFR Mutation Test v2. 2015. http://www.fda.gov/drugs/informationondrugs/approveddrugs/ucm504540.htm. Accessed 31 Jan 2018.

  61. 61.

    Yung TK, Chan KC, Mok TS, Tong J, To KF, Lo YM. Single-molecule detection of epidermal growth factor receptor mutations in plasma by microfluidics digital PCR in non-small cell lung cancer patients. Clin Cancer Res. 2009;15:2076–84.

    CAS  Article  Google Scholar 

  62. 62.

    Lee JY, Qing X, Xiumin W, Yali B, Chi S, Bak SH, et al. Longitudinal monitoring of EGFR mutations in plasma predicts outcomes of NSCLC patients treated with EGFR TKIs: Korean Lung Cancer Consortium (KLCC‑12‑02). Oncotarget 2016;7:6984–93.

    Google Scholar 

  63. 63.

    Sacher AG, Paweletz C, Dahlberg SE, Alden RS, O’Connell A, Feeney N, et al. Prospective validation of rapid plasma genotyping for the detection of EGFR and KRAS mutations in advanced lung cancer. JAMA Oncol. 2016;2:1014–22.

    Article  Google Scholar 

  64. 64.

    Couraud S, Vaca-Paniagua F, Villar S, Oliver J, Schuster T, Blanché H, et al. Noninvasive diagnosis of actionable mutations by deep sequencing of circulating free DNA in lung cancer from never‑smokers: a proof‑of‑concept study from BioCAST/IFCT‑1002. Clin Cancer Res 2014;20:4613–24.

    Article  Google Scholar 

  65. 65.

    Uchida J, Kato K, Kukita Y, Kumagai T, Nishino K, Daga H, et al. Diagnostic accuracy of noninvasive genotyping of EGFR in lung cancer patients by deep sequencing of plasma cell-Free DNA. Clin Chem. 2015;61:1191–6.

    CAS  Article  Google Scholar 

  66. 66.

    Paweletz CP, Sacher AG, Raymond CK, Alden RS, O’Connell A, Mach SL, et al. Bias-corrected targeted next-generation sequencing for rapid, multiplexed detection of actionable alterations in cell-free DNA from advanced lung cancer patients. Clin Cancer Res. 2016;22:915–22.

    Article  Google Scholar 

  67. 67.

    Thompson JC, Yee SS, Troxel AB, Savitch SL, Fan R, Balli D, et al. Detection of therapeutically targetable driver and resistance mutations in lung cancer patients by next-generation sequencing of cell-free circulating tumor DNA. Clin Cancer Res. 2016;22:5772–82.

    CAS  Article  Google Scholar 

  68. 68.

    Jenkins S, Yang JC, Ramalingam SS, Yu K, Patel S, Weston S, et al. Plasma ctDNA analysis for detection of the EGFR T790M mutation in patients with advanced non-small cell lung cancer. J Thorac Oncol. 2017;12:1061–70.

    Article  Google Scholar 

  69. 69.

    Takahama T, Sakai K, Takeda M, Azuma K, Hida T, Hirabayashi M, et al. Detection of the T790M mutation of EGFR in plasma of advanced non–small cell lung cancer patients with acquired resistance to tyrosine kinase inhibitors (West Japan oncology group 8014LTR study). Oncotarget. 2016;7:58492–9.

    Article  Google Scholar 

  70. 70.

    Mok TSK, Kim SW, Wu YL, Nakagawa K, Yang JJ, Ahn MJ, et al. Gefitinib plus chemotherapy versus chemotherapy in epidermal growth factor receptor mutation-positive non-small-cell lung cancer resistant to first-Line gefitinib (IMPRESS): overall survival and biomarker analyses. J Clin Oncol. 2017;35:4027–34.

    CAS  Article  Google Scholar 

  71. 71.

    Karlovich C, Goldman JW, Sun JM, Mann E, Sequist LV, Konopa K, et al. Assessment of EGFR mutation status in matched plasma and tumor tissue of NSCLC patients from a phase I study of rociletinib (CO-1686). Clin Cancer Res. 2016;22:2386–95.

    CAS  Article  Google Scholar 

  72. 72.

    Oxnard GR, Thress KS, Alden RS, Lawrance R, Paweletz CP, Cantarini M, et al. Association between plasma genotyping and outcomes of treatment with osimertinib (AZD9291) in advanced non-small-cell lung cancer. J Clin Oncol. 2016;34:3375–82.

    CAS  Article  Google Scholar 

  73. 73.

    Wu YL, Zhou C, Liam CK, Wu G, Liu X, Zhong Z, et al. First-line erlotinib versus gemcitabine/cisplatin in patients with advanced EGFR mutation-positive non-small-cell lung cancer: analyses from the phase III, randomized, open-label, ENSURE study. Ann Oncol. 2015;26:1883–9.

    Article  Google Scholar 

  74. 74.

    Oztan A, Fischer S, Schrock AB, Erlich RL, Lovly CM, Stephens PJ, et al. Emergence of EGFR G724S mutation in EGFR-mutant lung adenocarcinoma post progression on osimertinib. Lung Cancer. 2017;111:84–7.

    Article  Google Scholar 

  75. 75.

    Kobayashi S, Boggon TJ, Dayaram T, Jänne PA, Kocher O, Meyerson M, et al. EGFR mutation and resistance of non-small-cell lung cancer to gefitinib. N Engl J Med. 2005;352:786–92.

    CAS  Article  Google Scholar 

  76. 76.

    Sequist LV, Waltman BA, Dias-Santagata D, Digumarthy S, Turke AB, Fidias P, et al. Genotypic and histological evolution of lung cancers acquiring resistance to EGFR inhibitors. Sci Transl Med. 2011;3:75ra26.

    Article  Google Scholar 

  77. 77.

    Ohashi K, Maruvka YE, Michor F, Pao W. Epidermal growth factor receptor tyrosine kinase inhibitor-resistant disease. J Clin Oncol. 2013;31:1070–80.

    CAS  Article  Google Scholar 

  78. 78.

    Ramalingam SS, Yang JC, Lee CK, Kurata T, Kim DW, John T, et al. Osimertinib as first-line treatment of EGFR mutation-positive advanced non-small-cell lung cancer. J Clin Oncol 2017;25:JCO2017747576. https://doi.org/10.1200/JCO.2017.74.7576. (Epub ahead of print).

    Article  Google Scholar 

  79. 79.

    Goss G, Tsai CM, Shepherd FA, Bazhenova L, Lee JS, Chang GC, et al. Osimertinib for pretreated EGFR Thr790Met-positive advanced non-small-cell lung cancer (AURA2): a multicentre, open-label, single-arm, phase 2 study. Lancet Oncol. 2016;17:1643–52.

    CAS  Article  Google Scholar 

  80. 80.

    Mok TS, Wu Y-L, Ahn M-J, Garassino MC, Kim HR, Ramalingam SS, et al. Osimertinib or platinum-pemetrexed in EGFR T790M-positive lung cancer. N Engl J Med. 2017;376:629–40.

    Google Scholar 

Download references

Author information

Affiliations

Authors

Corresponding author

Correspondence to Fumihiro Tanaka.

Ethics declarations

Conflict of interest

Kazue Yoneda has no conflicts of interest; Naoko Imanishi has no conflicts of interest; Yoshinobu Ichiki has no conflicts of interest; Fumihiro Tanaka received a research grant from Astra Zeneca, Chugai Pharmaceutical, Taiho Pharmaceutical and Ono Pharmaceutical and received honoraria from Astra Zeneca, Chugai Pharmaceutical and Taiho Pharmaceutical.

Rights and permissions

Reprints and Permissions

About this article

Verify currency and authenticity via CrossMark

Cite this article

Yoneda, K., Imanishi, N., Ichiki, Y. et al. A liquid biopsy in primary lung cancer. Surg Today 49, 1–14 (2019). https://doi.org/10.1007/s00595-018-1659-2

Download citation

Keywords

  • Liquid biopsies
  • Circulating tumor DNA
  • Plasma genotyping
  • EGFR