Skip to main content

Advertisement

Log in

Glucagon-like peptide-1 prevented abdominal aortic aneurysm development in rats

  • Original Article
  • Published:
Surgery Today Aims and scope Submit manuscript

Abstract

Purpose

To demonstrate the protective effect of glucagon-like peptide 1 (GLP-1) signaling on the cardiovascular system, we conducted this study to show that the GLP-1 receptor analog (lixisenatide) could inhibit abdominal aortic aneurysm (AAA) development in rats.

Methods

Lixisenatide was injected subcutaneously 7 days after aneurysm preparation. We evaluated reactive oxygen species (ROS) expression by dihydroethidium staining and 8-hydroxydeoxyguanosine (8-OHdG; the oxidation product of DNA) by immunohistochemical staining. We also analyzed the effect of GLP-1 signaling on the inflammatory response. Histopathological examination was done on day 28, and the AAA dilatation ratio was calculated.

Results

On day 14, ROS expression and 8-OHdG-positive cells in the aneurysm walls were seen to have been significantly decreased by lixisenatide treatment. Western blot analysis showed decreased ERK expression. There was significantly reduced tumor necrosis factor-α mRNA expression in the aneurysm walls and CD68-positive cell infiltration in the aneurysm walls. On day 28, it was evident that the lixisenatide had dramatically reduced aneurysm development in the rats.

Conclusion

GLP-1 elevation inhibits AAA development in rats through its anti-oxidant and anti-inflammatory effects. Thus, GLP-1 could be a potent pharmacological target for AAA treatment.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6

Similar content being viewed by others

References

  1. Ayabe N, Babaev VR, Tang Y, Tanizawa T, Fogo AB, Linton MF, et al. Transiently heightened angiotensin II has distinct effects on atherosclerosis and aneurysm formation in hyperlipidemic mice. Atherosclerosis. 2006;184:312–21.

    Article  CAS  PubMed  Google Scholar 

  2. Thompson RW, Holmes DR, Mertens RA, Liao S, Botney MD, Mecham RP, Welgus HG, Parks WC. Production and localization of 92-kilodalton gelatinase in abdominal aortic aneurysms. An elastolytic metalloproteinase expressed by aneurysm-infiltrating macrophages. J Clin Invest. 1995;96:318–26.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  3. Freestone T, Turner RJ, Coady A, Higman DJ, Greenhalgh RM, Powell JT. Inflammation and matrix metalloproteinases in the enlarging abdominal aortic aneurysm. Arterioscler Thromb Vasc Biol. 1995;15:1145–51.

    Article  CAS  PubMed  Google Scholar 

  4. Pyo R, Lee JK, Shipley JM, Curci JA, Mao D, Ziporin SJ, et al. Targeted gene disruption of matrix metalloproteinase-9 (gelatinase B) suppresses development of experimental abdominal aortic aneurysms. J Clin Invest. 2000;105:1641–9.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  5. Molacek J, Mares J, Treska V, Houdek K, Baxa J. Proteomic analysis of the abdominal aortic aneurysm wall. Surg Today. 2014;44(1):142–51.

    Article  CAS  PubMed  Google Scholar 

  6. Miller FJ Jr, Sharp WJ, Fang X, Oberley LW, Oberley TD, Weintraub NL. Oxidative stress in human abdominal aortic aneurysms: a potential mediator of aneurysmal remodeling. Arterioscler Thromb Vasc Biol. 2002;22:560–5.

    Article  CAS  PubMed  Google Scholar 

  7. Thomas M, Gavrila D, McCormick ML, Miller FJ Jr, Daugherty A, Cassis LA, et al. Deletion of p47phox attenuates angiotensin II-induced abdominal aortic aneurysm formation in apolipoprotein E-deficient mice. Circulation. 2006;114:404–13.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  8. McCormick ML, Gavrila D, Weintraub NL. Role of oxidative stress in the pathogenesis of abdominal aortic aneurysms. Arterioscler Thromb Vasc Biol. 2007;27:461–9.

    Article  CAS  PubMed  Google Scholar 

  9. Gavrila D, Li WG, McCormick ML, Thomas M, Daugherty A, Cassis LA, et al. Vitamin E inhibits abdominal aortic aneurysm formation in angiotensin II-infused apolipoprotein E-deficient mice. Arterioscler Thromb Vasc Biol. 2005;25:1671–7.

    Article  CAS  PubMed  Google Scholar 

  10. Tanaka A, Hasegawa T, Morimoto K, Bao W, Yu J, Okita Y, et al. Controlled release of ascorbic acid from gelatin hydrogel attenuates abdominal aortic aneurysm formation in rat experimental abdominal aortic aneurysm model. J Vasc Surg. 2014;60:749–58.

    Article  PubMed  Google Scholar 

  11. Xiong W, Mactaggart J, Knispel R, Worth J, Zhu Z, Li Y, et al. Inhibition of reactive oxygen species attenuates aneurysm formation in a murine model. Atherosclerosis. 2009;202:128–34.

    Article  CAS  PubMed  Google Scholar 

  12. Morimoto K, Hasegawa T, Tanaka A, Wulan B, Yu J, Morimoto N, et al. Free-radical scavenger edaravone inhibits both formation and development of abdominal aortic aneurysm in rats. J Vasc Surg. 2012;55:1749–58.

    Article  PubMed  Google Scholar 

  13. Holscher C. The incretin hormones glucagon-like peptide 1 and glucose-dependent insulinotropic polypeptide are neuroprotective in mouse models of Alzheimer’s disease. Alzheimers Dement. 2014;10:S47–54.

    Article  PubMed  Google Scholar 

  14. Tanaka A, Hasegawa T, Chen Z, Okita Y, Okada K. A novel rat model of abdominal aortic aneurysm using a combination of intraluminal elastase infusion and extraluminal calcium chloride exposure. J Vasc Surg. 2009;50:1423–32.

    Article  PubMed  Google Scholar 

  15. Cai HY, Holscher C, Yue XH, Zhang SX, Wang XH, Qiao F, et al. Lixisenatide rescues spatial memory and synaptic plasticity from amyloid beta protein-induced impairments in rats. Neuroscience. 2014;277C:6–13.

    Article  Google Scholar 

  16. Hunter K, Holscher C. Drugs developed to treat diabetes, liraglutide and lixisenatide, cross the blood brain barrier and enhance neurogenesis. BMC Neurosci. 2012;13:33.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  17. Werner U, Haschke G, Herling AW, Kramer W. Pharmacological profile of lixisenatide: a new GLP-1 receptor agonist for the treatment of type 2 diabetes. Regul Pept. 2010;164:58–64.

    Article  CAS  PubMed  Google Scholar 

  18. Wohlfart P, Linz W, Hubschle T, Linz D, Huber J, Hess S, et al. Cardioprotective effects of lixisenatide in rat myocardial ischemia-reperfusion injury studies. J Transl Med. 2013;11:84.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  19. Miller FJ Jr, Gutterman DD, Rios CD, Heistad DD, Davidson BL. Superoxide production in vascular smooth muscle contributes to oxidative stress and impaired relaxation in atherosclerosis. Circ Res. 1998;82:1298–305.

    Article  CAS  PubMed  Google Scholar 

  20. Kishi T, Hirooka Y, Kimura Y, Ito K, Shimokawa H, Takeshita A. Increased reactive oxygen species in rostral ventrolateral medulla contribute to neural mechanisms of hypertension in stroke-prone spontaneously hypertensive rats. Circulation. 2004;109:2357–62.

    Article  CAS  PubMed  Google Scholar 

  21. Kaulmann A, Bohn T. Carotenoids, inflammation, and oxidative stress—implications of cellular signaling pathways and relation to chronic disease prevention. Nutr Res. 2014;34:907–29.

    Article  CAS  PubMed  Google Scholar 

  22. Guyton KZ, Liu Y, Gorospe M, Xu Q, Holbrook NJ. Activation of mitogen-activated protein kinase by H2O2. Role in cell survival following oxidant injury. J Biol Chem. 1996;271:4138–42.

    Article  CAS  PubMed  Google Scholar 

  23. Torres M, Forman HJ. Redox signaling and the MAP kinase pathways. BioFactors. 2003;17:287–96.

    Article  CAS  PubMed  Google Scholar 

  24. Yoshizumi M, Tsuchiya K, Tamaki T. Signal transduction of reactive oxygen species and mitogen-activated protein kinases in cardiovascular disease. J Med Invest. 2001;48:11–24.

    CAS  PubMed  Google Scholar 

  25. Ehrlichman LK, Ford JW, Roelofs KJ, Tedeschi-Filho W, Futchko JS, Ramacciotti E, et al. Gender-dependent differential phosphorylation in the ERK signaling pathway is associated with increased MMP2 activity in rat aortic smooth muscle cells. J Surg Res. 2010;160:18–24.

    Article  CAS  PubMed  Google Scholar 

  26. Ghosh A, DiMusto PD, Ehrlichman LK, Sadiq O, McEvoy B, Futchko JS, et al. The role of extracellular signal-related kinase during abdominal aortic aneurysm formation. J Am Coll Surg. 2012;215:668–80.

    Article  PubMed  PubMed Central  Google Scholar 

  27. Zhang F, Banker G, Liu X, Suwanabol PA, Lengfeld J, Yamanouchi D, et al. The novel function of advanced glycation end products in regulation of MMP-9 production. J Surg Res. 2011;171:871–6.

    Article  CAS  PubMed  Google Scholar 

  28. Kim JY, Kim WJ, Kim H, Suk K, Lee WH. The Stimulation of CD147 Induces MMP-9 Expression through ERK and NF-kappaB in Macrophages: implication for Atherosclerosis. Immune Netw. 2009;9:90–7.

    Article  PubMed  PubMed Central  Google Scholar 

  29. Liang KC, Lee CW, Lin WN, Lin CC, Wu CB, Luo SF, et al. Interleukin-1beta induces MMP-9 expression via p42/p44 MAPK, p38 MAPK, JNK, and nuclear factor-kappaB signaling pathways in human tracheal smooth muscle cells. J Cell Physiol. 2007;211:759–70.

    Article  CAS  PubMed  Google Scholar 

  30. Moon SK, Cha BY, Kim CH. ERK1/2 mediates TNF-alpha-induced matrix metalloproteinase-9 expression in human vascular smooth muscle cells via the regulation of NF-kappaB and AP-1: involvement of the ras dependent pathway. J Cell Physiol. 2004;198:417–27.

    Article  CAS  PubMed  Google Scholar 

  31. Yoshimura K, Aoki H, Ikeda Y, Fujii K, Akiyama N, Furutani A, et al. Regression of abdominal aortic aneurysm by inhibition of c-Jun N-terminal kinase. Nat Med. 2005;11:1330–8.

    Article  CAS  PubMed  Google Scholar 

Download references

Acknowledgments

This study was supported by a Grant-in-Aid for Scientific Research (C) (No. 24592064) from the Japan Society for the Promotion of Science. We thank Sanofi K.K. Corporation for providing the lixisenatide. We also thank Atsumi Katsuta for assistance performing data analysis.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Kenji Okada.

Ethics declarations

Conflict of interest

None declared.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Yu, J., Morimoto, K., Bao, W. et al. Glucagon-like peptide-1 prevented abdominal aortic aneurysm development in rats. Surg Today 46, 1099–1107 (2016). https://doi.org/10.1007/s00595-015-1287-z

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s00595-015-1287-z

Keywords

Navigation