Skip to main content
Log in

Beneficial effects of a cardiac support device on left ventricular remodeling after posterior myocardial infarction: an evaluation by echocardiography, pressure–volume curves and ventricular histology

  • Original Article
  • Published:
Surgery Today Aims and scope Submit manuscript

Abstract

Purpose

Posterior myocardial infarction (MI) can induce LV remodeling and ischemic mitral regurgitation (IMR). The protective effects of a cardiac support device (CSD) against LV remodeling and IMR after posterior MI have been poorly documented.

Methods

Posterior MI was induced by ligation of the left circumflex coronary artery in beagle dogs. After 7 days, the dogs were randomized to a CSD placement (CSD group, n = 8) or no treatment (CTL group, n = 8).

Results

At 3 months after MI, the LV remodeling was less marked and the LV and RV systolic functions were better in the CSD group than in the CTL group. Neither the RV nor LV diastolic function (min dP/dt, Tau and EDPVR) was disturbed by the CSD. IMR was consistently prevented in our canine model.

Conclusion

Early application of a CSD after posterior MI can attenuate LV remodeling without causing any deterioration of the biventricular diastolic function.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6
Fig. 7
Fig. 8
Fig. 9

Similar content being viewed by others

Abbreviations

IMR:

Ischemic mitral regurgitation

CSD:

Cardiac support device

CTL:

Control

LV:

Left ventricular

RV:

Right ventricular

EF:

Ejection fraction

ESV:

End-systolic volume

EDV:

End-diastolic volume

LVDd:

Left ventricular end-diastolic dimension

LVDs:

Left ventricular end-systolic dimension

MR:

Mitral regurgitation

TR:

Tricuspid regurgitation

MI:

Myocardial infarction

ESP:

End-systolic pressure

EDP:

End-diastolic pressure

dP/dt:

Delta pressure/delta time

EDPVR:

End-diastolic pressure–volume relationship

References

  1. Mann DL. Left ventricular size and shape: determinants of mechanical signal transduction pathways. Heart Fail Rev. 2005;10(2):95–100.

    Article  PubMed  Google Scholar 

  2. Blom AS, et al. Cardiac support device modifies left ventricular geometry and myocardial structure after myocardial infarction. Circulation. 2005;112(9):1274–83.

    Article  PubMed  Google Scholar 

  3. Pilla JJ, et al. Early postinfarction ventricular restraint improves borderzone wall thickening dynamics during remodeling. Ann Thorac Surg. 2005;80(6):2257–62.

    Article  PubMed  Google Scholar 

  4. Bouma W, et al. Chronic ischaemic mitral regurgitation. Current treatment results and new mechanism-based surgical approaches. Eur J Cardiothorac Surg. 2010;37(1):170–85.

    Article  PubMed  Google Scholar 

  5. Guy TST, et al. Prevention of ischemic mitral regurgitation does not influence the outcome of remodeling after posterolateral myocardial infarction. J Am Coll Cardiol. 2004;43(3):377–83.

    Article  PubMed  Google Scholar 

  6. Kumanohoso T, et al. Mechanism of higher incidence of ischemic mitral regurgitation in patients with inferior myocardial infarction: quantitative analysis of left ventricular and mitral valve geometry in 103 patients with prior myocardial infarction. J Thorac Cardiovasc Surg. 2003;125(1):135–43.

    Article  PubMed  Google Scholar 

  7. Timek TA, et al. Ischemia in three left ventricular regions: insights into the pathogenesis of acute ischemic mitral regurgitation. J Thorac Cardiovasc Surg. 2003;125(3):559–69.

    Article  PubMed  Google Scholar 

  8. Enomoto Y, et al. Early ventricular restraint after myocardial infarction: extent of the wrap determines the outcome of remodeling. Ann Thorac Surg. 2005;79(3):881–7 (discussion 881-7).

    Article  PubMed  Google Scholar 

  9. Raman JS, et al. Ventricular constraint in severe heart failure halts decline in cardiovascular function associated with experimental dilated cardiomyopathy. Ann Thorac Surg. 2003;76(1):141–7.

    Article  PubMed  Google Scholar 

  10. Sabbah HN. The cardiac support device and the myosplint: treating heart failure by targeting left ventricular size and shape. Ann Thorac Surg. 2003;75(6 Suppl):S13–9.

    Article  PubMed  Google Scholar 

  11. Kubota Y, et al. Impact of cardiac support device combined with slow-release prostacyclin agonist in a canine ischemic cardiomyopathy model. J Thorac Cardiovasc Surg. 2014;147(3):1081–7.

    Article  CAS  PubMed  Google Scholar 

  12. Benjamin M, Morrow DA, ST-elevation myocardial infarction: pathology, pathophysiology, and clinical features, in braunvald’s heart disease, E. Braunwald, editor. 2015, Elsevier, pp 1081–2.

  13. Beaudoin J, et al. Late repair of ischemic mitral regurgitation does not prevent left ventricular remodeling: importance of timing for beneficial repair. Circulation. 2013;128(11 Suppl 1):S248–52.

    Article  PubMed  PubMed Central  Google Scholar 

  14. Beeri R, et al. Early repair of moderate ischemic mitral regurgitation reverses left ventricular remodeling: a functional and molecular study. Circulation. 2007;116(11 Suppl):I288–93.

    PubMed  Google Scholar 

  15. Ishimaru K, et al. Functional and pathological characteristics of reversible remodeling in a canine right ventricle in response to volume overloading and volume unloading. Surg Today. 2014;44(10):1935–45.

    Article  PubMed  PubMed Central  Google Scholar 

  16. Maxwell MP, Hearse DJ, Yellon DM. Species variation in the coronary collateral circulation during regional myocardial ischaemia: a critical determinant of the rate of evolution and extent of myocardial infarction. Cardiovasc Res. 1987;21(10):737–46.

    Article  CAS  PubMed  Google Scholar 

  17. Hearse DJ. Species variation in the coronary collateral circulation during regional myocardial ischaemia: a critical determinant of the rate of evolution and extent of myocardial infarction. Cardiovasc Res. 2000;45(1):213–9.

    Article  CAS  PubMed  Google Scholar 

  18. Shafy A, et al. Development of cardiac support bioprostheses for ventricular restoration and myocardial regeneration. Eur J Cardiothorac Surg. 2012;43(6):1211–9.

    Article  PubMed  Google Scholar 

  19. Acker MA, et al. Mitral valve repair in heart failure: five-year follow-up from the mitral valve replacement stratum of the Acorn randomized trial. J Thorac Cardiovasc Surg. 2013;142(3):569–74.

    Article  Google Scholar 

  20. Kloeters C, et al. Evaluation of left and right ventricular diastolic function by electron-beam computed tomography in patients with passive epicardial constraint. J Comput Assist Tomogr. 2008;32(1):78–85.

    Article  PubMed  Google Scholar 

Download references

Acknowledgments

We are very grateful to Yoshihide Asakawa (Nihon Kohden Co., Ltd.) and Takashi Nakasaki and Minoru Iwata (Taisho Biomed Instruments Co., Ltd.) for their valuable assistance with the experiments.

Conflict of interest

None declared.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Toshiaki Akita.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Okada, M., Akita, T., Mizuno, F. et al. Beneficial effects of a cardiac support device on left ventricular remodeling after posterior myocardial infarction: an evaluation by echocardiography, pressure–volume curves and ventricular histology. Surg Today 46, 621–630 (2016). https://doi.org/10.1007/s00595-015-1202-7

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s00595-015-1202-7

Keywords

Navigation