Skip to main content

Advertisement

Log in

Whole-organ re-engineering: a regenerative medicine approach in digestive surgery for organ replacement

  • Review Article
  • Published:
Surgery Today Aims and scope Submit manuscript

Abstract

Recovery from end-stage organ failure presents a challenge for the medical community, considering the limitations of extracorporeal assist devices and the shortage of donors when organ replacement is needed. There is a need for new methods to promote recovery from organ failure and regenerative medicine is an option that should be considered. Recent progress in the field of tissue engineering has opened avenues for potential clinical applications, including the use of microfluidic devices for diagnostic purposes, and bioreactors or cell/tissue-based therapies for transplantation. Early attempts to engineer tissues produced thin, planar constructs; however, recent approaches using synthetic scaffolds and decellularized tissue have achieved a more complex level of tissue organization in organs such as the urinary bladder and trachea, with some success in clinical trials. In this context, the concept of decellularization technology has been applied to produce whole organ-derived scaffolds by removing cellular content while retaining all the necessary vascular and structural cues of the native organ. In this review, we focus on organ decellularization as a new regenerative medicine approach for whole organs, which may be applied in the field of digestive surgery.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2

Similar content being viewed by others

Abbreviations

ES:

Embryonic stem

iPS:

Induced pluripotent stem

ECM:

Extracellular matrix

GAGs:

Glycosaminoglycans

EDTA:

Ethylenediaminetetraacetic acid

EGTA:

Ethylene glycol tetraacetic acid

BME:

Basement membrane extract

HLA:

Human leukocyte antigen

OPTN:

Organ procurement and transplantation network

SRTR:

Scientific registry of transplant recipients

References

  1. Lee SG, Hwang S, Kim KH, et al. Toward 300 liver transplants a year. Surg Today. 2009;39:367–73.

    Article  PubMed  CAS  Google Scholar 

  2. Garg M, Jones RM, Vaughan RB, et al. Intestinal transplantation: current status and future directions. J Gastroenterol Hepatol. 2011;26:1221–8.

    Article  PubMed  Google Scholar 

  3. Gruessner AC, Sutherland DE, Gruessner RW. Long-term outcome after pancreas transplantation. Curr Opin Organ Transplant. 2012;17:100–5.

    Article  PubMed  Google Scholar 

  4. Fung YC, Sobin SS. Elasticity of the pulmonary alveolar sheet. Circ Res. 1972;30:451–69.

    Article  PubMed  CAS  Google Scholar 

  5. Langer R, Vacanti JP. Tissue engineering. Science. 1993;260:920–6.

    Article  PubMed  CAS  Google Scholar 

  6. Meezan E, Hjelle JT, Brendel K, et al. A simple, versatile, nondisruptive method for the isolation of morphologically and chemically pure basement membranes from several tissues. Life Sci. 1975;17:1721–32.

    Article  PubMed  CAS  Google Scholar 

  7. Rojkind M, Gatmaitan Z, Mackensen S, et al. Connective tissue biomatrix: its isolation and utilization for long-term cultures of normal rat hepatocytes. J Cell Biol. 1980;87:255–63.

    Article  PubMed  CAS  Google Scholar 

  8. Bissell MJ, Hall HG, Parry G. How does the extracellular matrix direct gene expression? J Theor Biol. 1982;99:31–68.

    Article  PubMed  CAS  Google Scholar 

  9. Lwebuga-Mukasa JS, Ingbar DH, Madri JA. Repopulation of a human alveolar matrix by adult rat type II pneumocytes in vitro. A novel system for type II pneumocyte culture. Exp Cell Res. 1986;162:423–35.

    Article  PubMed  CAS  Google Scholar 

  10. Kim SS, Kaihara S, Benvenuto MS, et al. Regenerative signals for intestinal epithelial organoid units transplanted on biodegradable polymer scaffolds for tissue engineering of small intestine. Transplantation. 1999;67:227–33.

    Article  PubMed  CAS  Google Scholar 

  11. Nakase Y, Hagiwara A, Nakamura T, et al. Tissue engineering of small intestinal tissue using collagen sponge scaffolds seeded with smooth muscle cells. Tissue Eng. 2006;12:403–12.

    Article  PubMed  CAS  Google Scholar 

  12. Javaid Ur R, Waseem T. Intestinal tissue engineering: where do we stand? Surg Today. 2008;38:484–6.

    Article  Google Scholar 

  13. Demetriou AA, Whiting JF, Feldman D, et al. Replacement of liver function in rats by transplantation of microcarrier-attached hepatocytes. Science. 1986;233:1190–2.

    Article  PubMed  CAS  Google Scholar 

  14. Rozga J, Williams F, Ro MS, et al. Development of a bioartificial liver: properties and function of a hollow-fiber module inoculated with liver cells. Hepatology. 1993;17:258–65.

    Article  PubMed  CAS  Google Scholar 

  15. Stutchfield BM, Simpson K, Wigmore SJ. Systematic review and meta-analysis of survival following extracorporeal liver support. Br J Surg. 2011;98:623–31.

    Article  PubMed  CAS  Google Scholar 

  16. Reach G, Jaffrin MY, Desjeux JF. A U-shaped bioartificial pancreas with rapid glucose-insulin kinetics. In vitro evaluation and kinetic modelling. Diabetes. 1984;33:752–61.

    Article  PubMed  CAS  Google Scholar 

  17. Lombardi CP, Urso A, Catapano G, et al. Membrane bioreactors as hybrid artificial pancreas: experimental evaluation. Int J Artif Organs. 1992;15:126–30.

    PubMed  CAS  Google Scholar 

  18. Park JK, Lee DH. Bioartificial liver systems: current status and future perspective. J Biosci Bioeng. 2005;99:311–9.

    Article  PubMed  CAS  Google Scholar 

  19. Sato T, Vries RG, Snippert HJ, et al. Single Lgr5 stem cells build crypt-villus structures in vitro without a mesenchymal niche. Nature. 2009;459:262–5.

    Article  PubMed  CAS  Google Scholar 

  20. Spence JR, Mayhew CN, Rankin SA, et al. Directed differentiation of human pluripotent stem cells into intestinal tissue in vitro. Nature. 2011;470:105–9.

    Article  PubMed  Google Scholar 

  21. Hay DC, Fletcher J, Payne C, et al. Highly efficient differentiation of hESCs to functional hepatic endoderm requires ActivinA and Wnt3a signaling. Proc Natl Acad Sci USA. 2008;105:12301–6.

    Article  PubMed  CAS  Google Scholar 

  22. Basma H, Soto-Gutierrez A, Yannam GR, et al. Differentiation and transplantation of human embryonic stem cell-derived hepatocytes. Gastroenterology. 2009;136:990–9.

    Article  PubMed  CAS  Google Scholar 

  23. Si-Tayeb K, Noto FK, Nagaoka M, et al. Highly efficient generation of human hepatocyte-like cells from induced pluripotent stem cells. Hepatology. 2010;51:297–305.

    Article  PubMed  CAS  Google Scholar 

  24. Kajiwara M, Aoi T, Okita K, et al. Donor-dependent variations in hepatic differentiation from human-induced pluripotent stem cells. Proc Natl Acad Sci USA. 2012;109:12538–43.

    Article  PubMed  CAS  Google Scholar 

  25. Woo DH, Kim SK, Lim HJ, et al. Direct and indirect contribution of human embryonic stem cell-derived hepatocyte-like cells to liver repair in mice. Gastroenterology. 2012;142:602–11.

    Article  PubMed  CAS  Google Scholar 

  26. Chen YF, Tseng CY, Wang HW, et al. Rapid generation of mature hepatocyte-like cells from human induced pluripotent stem cells by an efficient three-step protocol. Hepatology. 2012;55:1193–203.

    Article  PubMed  CAS  Google Scholar 

  27. Bonner-Weir S, Weir GC. New sources of pancreatic beta-cells. Nat Biotechnol. 2005;23:857–61.

    Article  PubMed  CAS  Google Scholar 

  28. D’Amour KA, Bang AG, Eliazer S, et al. Production of pancreatic hormone-expressing endocrine cells from human embryonic stem cells. Nat Biotechnol. 2006;24:1392–401.

    Article  PubMed  Google Scholar 

  29. Kroon E, Martinson LA, Kadoya K, et al. Pancreatic endoderm derived from human embryonic stem cells generates glucose-responsive insulin-secreting cells in vivo. Nat Biotechnol. 2008;26:443–52.

    Article  PubMed  CAS  Google Scholar 

  30. Discher DE, Mooney DJ, Zandstra PW. Growth factors, matrices, and forces combine and control stem cells. Science. 2009;324:1673–7.

    Article  PubMed  CAS  Google Scholar 

  31. Cheng HW, Tsui YK, Cheung KM, et al. Decellularization of chondrocyte-encapsulated collagen microspheres: a three-dimensional model to study the effects of acellular matrix on stem cell fate. Tissue Eng Part C Methods. 2009;15:697–706.

    Article  PubMed  CAS  Google Scholar 

  32. Barkan D, Green JE, Chambers AF. Extracellular matrix: a gatekeeper in the transition from dormancy to metastatic growth. Eur J Cancer. 2010;46:1181–8.

    Article  PubMed  CAS  Google Scholar 

  33. Badylak SF. The extracellular matrix as a biologic scaffold material. Biomaterials. 2007;28:3587–93.

    Article  PubMed  CAS  Google Scholar 

  34. Ott HC, Matthiesen TS, Goh SK, et al. Perfusion-decellularized matrix: using nature’s platform to engineer a bioartificial heart. Nat Med. 2008;14:213–21.

    Article  PubMed  CAS  Google Scholar 

  35. Wainwright JM, Czajka CA, Patel UB, et al. Preparation of cardiac extracellular matrix from an intact porcine heart. Tissue Eng Part C Methods. 2010;16:525–32.

    Article  PubMed  CAS  Google Scholar 

  36. Uygun BE, Soto-Gutierrez A, Yagi H, et al. Organ reengineering through development of a transplantable recellularized liver graft using decellularized liver matrix. Nat Med. 2010;16:814–20.

    Article  PubMed  CAS  Google Scholar 

  37. Baptista PM, Siddiqui MM, Lozier G, et al. The use of whole organ decellularization for the generation of a vascularized liver organoid. Hepatology. 2011;53:604–17.

    Article  PubMed  CAS  Google Scholar 

  38. Ott HC, Clippinger B, Conrad C, et al. Regeneration and orthotopic transplantation of a bioartificial lung. Nat Med. 2010;16:927–33.

    Article  PubMed  CAS  Google Scholar 

  39. Price AP, England KA, Matson AM, et al. Development of a decellularized lung bioreactor system for bioengineering the lung: the matrix reloaded. Tissue Eng Part A. 2010;16:2581–91.

    Article  PubMed  CAS  Google Scholar 

  40. Crapo PM, Gilbert TW, Badylak SF. An overview of tissue and whole organ decellularization processes. Biomaterials. 2011;32:3233–43.

    Article  PubMed  CAS  Google Scholar 

  41. Wells RG. The role of matrix stiffness in regulating cell behavior. Hepatology. 2008;47:1394–400.

    Article  PubMed  CAS  Google Scholar 

  42. Rozario T, DeSimone DW. The extracellular matrix in development and morphogenesis: a dynamic view. Dev Biol. 2010;341:126–40.

    Article  PubMed  CAS  Google Scholar 

  43. Bissell MJ, Aggeler J. Dynamic reciprocity: how do extracellular matrix and hormones direct gene expression? Prog Clin Biol Res. 1987;249:251–62.

    PubMed  CAS  Google Scholar 

  44. Nelson CM, Bissell MJ. Of extracellular matrix, scaffolds, and signaling: tissue architecture regulates development, homeostasis, and cancer. Annu Rev Cell Dev Biol. 2006;22:287–309.

    Article  PubMed  CAS  Google Scholar 

  45. Cartmell JS, Dunn MG. Effect of chemical treatments on tendon cellularity and mechanical properties. J Biomed Mater Res. 2000;49:134–40.

    Article  PubMed  CAS  Google Scholar 

  46. Yang B, Zhang Y, Zhou L, et al. Development of a porcine bladder acellular matrix with well-preserved extracellular bioactive factors for tissue engineering. Tissue Eng Part C Methods. 2010;16:1201–11.

    Article  PubMed  CAS  Google Scholar 

  47. Flynn LE. The use of decellularized adipose tissue to provide an inductive microenvironment for the adipogenic differentiation of human adipose-derived stem cells. Biomaterials. 2010;31:4715–24.

    Article  PubMed  CAS  Google Scholar 

  48. Cortiella J, Niles J, Cantu A, et al. Influence of acellular natural lung matrix on murine embryonic stem cell differentiation and tissue formation. Tissue Eng Part A. 2010;16:2565–80.

    Article  PubMed  CAS  Google Scholar 

  49. Gui L, Chan SA, Breuer CK, et al. Novel utilization of serum in tissue decellularization. Tissue Eng Part C Methods. 2010;16:173–84.

    Article  PubMed  CAS  Google Scholar 

  50. Remlinger NT, Czajka CA, Juhas ME, et al. Hydrated xenogeneic decellularized tracheal matrix as a scaffold for tracheal reconstruction. Biomaterials. 2010;31:3520–6.

    Article  PubMed  CAS  Google Scholar 

  51. Hashimoto Y, Funamoto S, Sasaki S, et al. Preparation and characterization of decellularized cornea using high-hydrostatic pressurization for corneal tissue engineering. Biomaterials. 2010;31:3941–8.

    Article  PubMed  CAS  Google Scholar 

  52. Phillips M, Maor E, Rubinsky B. Nonthermal irreversible electroporation for tissue decellularization. J Biomech Eng. 2010;132:091003.

    Article  PubMed  Google Scholar 

  53. Fox IJ, Chowdhury JR, Kaufman SS, et al. Treatment of the Crigler–Najjar syndrome type I with hepatocyte transplantation. N Engl J Med. 1998;338:1422–6.

    Article  PubMed  CAS  Google Scholar 

  54. Toole BP. Hyaluronan in morphogenesis. Semin Cell Dev Biol. 2001;12:79–87.

    Article  PubMed  CAS  Google Scholar 

  55. Matrosova VY, Orlovskaya IA, Serobyan N, et al. Hyaluronic acid facilitates the recovery of hematopoiesis following 5-fluorouracil administration. Stem cells. 2004;22:544–55.

    Article  PubMed  CAS  Google Scholar 

  56. Arnaoutova I, George J, Kleinman HK, et al. Basement membrane matrix (BME) has multiple uses with stem cells. Stem cell Rev. 2012;8:163–9.

    Article  PubMed  CAS  Google Scholar 

  57. Guhr A, Kurtz A, Friedgen K, et al. Current state of human embryonic stem cell research: an overview of cell lines and their use in experimental work. Stem cells. 2006;24:2187–91.

    Article  PubMed  Google Scholar 

  58. Takahashi K, Yamanaka S. Induction of pluripotent stem cells from mouse embryonic and adult fibroblast cultures by defined factors. Cell. 2006;126:663–76.

    Article  PubMed  CAS  Google Scholar 

  59. Pournasr B, Khaloughi K, Salekdeh GH, et al. Concise review: alchemy of biology: generating desired cell types from abundant and accessible cells. Stem cells. 2011;29:1933–41.

    Article  PubMed  CAS  Google Scholar 

  60. Sneddon JB, Borowiak M, Melton DA. Self-renewal of embryonic-stem-cell-derived progenitors by organ-matched mesenchyme. Nature 2012 [Epub ahead of print].

  61. Coulombel L, Vuillet MH, Leroy C, et al. Lineage- and stage-specific adhesion of human hematopoietic progenitor cells to extracellular matrices from marrow fibroblasts. Blood. 1988;71:329–34.

    PubMed  CAS  Google Scholar 

  62. Macchiarini P, Jungebluth P, Go T, et al. Clinical transplantation of a tissue-engineered airway. Lancet. 2008;372:2023–30.

    Article  PubMed  Google Scholar 

  63. Adewumi O, Aflatoonian B, Ahrlund-Richter L, et al. Characterization of human embryonic stem cell lines by the International Stem Cell Initiative. Nat Biotechnol. 2007;25:803–16.

    Article  PubMed  CAS  Google Scholar 

  64. Wu SM, Hochedlinger K. Harnessing the potential of induced pluripotent stem cells for regenerative medicine. Nat Cell Biol. 2011;13:497–505.

    Article  PubMed  CAS  Google Scholar 

  65. Ben-David U, Benvenisty N. The tumorigenicity of human embryonic and induced pluripotent stem cells. Nat Rev Cancer. 2011;11:268–77.

    Article  PubMed  CAS  Google Scholar 

  66. Ilic D, Polak J. Stem cell based therapy–where are we going? Lancet. 2012;379:877–8.

    Article  PubMed  Google Scholar 

  67. Allaire E, Guettier C, Bruneval P, et al. Cell-free arterial grafts: morphologic characteristics of aortic isografts, allografts, and xenografts in rats. J Vasc Surg. 1994;19:446–56.

    Google Scholar 

  68. Allaire E, Bruneval P, Mandet C, et al. The immunogenicity of the extracellular matrix in arterial xenografts. Surgery. 1997;122:73–81.

    Article  PubMed  CAS  Google Scholar 

  69. Hawkins JA, Hillman ND, Lambert LM, et al. Immunogenicity of decellularized cryopreserved allografts in pediatric cardiac surgery: comparison with standard cryopreserved allografts. J Thorac Cardiovasc Surg. 2003;126:247–52. discussion 252–3.

    Article  PubMed  Google Scholar 

  70. Madden R, Lipkowitz G, Benedetto B, et al. Decellularized cadaver vein allografts used for hemodialysis access do not cause allosensitization or preclude kidney transplantation. Am J Kidney Dis Off J Natl Kidney Found. 2002;40:1240–3.

    Article  Google Scholar 

  71. Reagan BJ, Madden MR, Huo J, et al. Analysis of cellular and decellular allogeneic dermal grafts for the treatment of full-thickness wounds in a porcine model. J Trauma. 1997;43:458–66.

    Article  PubMed  CAS  Google Scholar 

  72. Barret JP, Dziewulski P, McCauley RL, et al. Dural reconstruction of a class IV calvarial burn with decellularized human dermis. Burns J Int Soc Burn Inj. 1999;25:459–62.

    Article  CAS  Google Scholar 

  73. Albo D, Awad SS, Berger DH, et al. Decellularized human cadaveric dermis provides a safe alternative for primary inguinal hernia repair in contaminated surgical fields. Am J Surg. 2006;192:e12–7.

    Article  PubMed  Google Scholar 

  74. Butler CE, Prieto VG. Reduction of adhesions with composite AlloDerm/polypropylene mesh implants for abdominal wall reconstruction. Plast Reconstr Surg. 2004;114:464–73.

    Article  PubMed  Google Scholar 

  75. Butler CE, Langstein HN, Kronowitz SJ. Pelvic, abdominal, and chest wall reconstruction with AlloDerm in patients at increased risk for mesh-related complications. Plastic Reconstr Surg. 2005;116:1263–75. discussion 1276–7.

    Article  CAS  Google Scholar 

  76. Keane TJ, Londono R, Turner NJ, et al. Consequences of ineffective decellularization of biologic scaffolds on the host response. Biomaterials. 2012;33:1771–81.

    Article  PubMed  CAS  Google Scholar 

  77. Kaushal S, Amiel GE, Guleserian KJ, et al. Functional small-diameter neovessels created using endothelial progenitor cells expanded ex vivo. Nat Med. 2001;7:1035–40.

    Article  PubMed  CAS  Google Scholar 

  78. Liu Y, Bharadwaj S, Lee SJ, et al. Optimization of a natural collagen scaffold to aid cell-matrix penetration for urologic tissue engineering. Biomaterials. 2009;30:3865–73.

    Article  PubMed  CAS  Google Scholar 

  79. Simon P, Kasimir MT, Seebacher G, et al. Early failure of the tissue engineered porcine heart valve SYNERGRAFT in pediatric patients. Eur J Cardio-Thorac Surg Off J Eur Assoc Cardio-Thorac Surg. 2003;23:1002–6. discussion 1006.

    Article  CAS  Google Scholar 

  80. Schreiber C, Eicken A, Seidl S, et al. Unexpected early failure of a decellularized right ventricle to pulmonary artery graft. Ann Thorac Surg. 2008;86:2026–7. author reply 2027-8.

    Article  PubMed  Google Scholar 

  81. Isch JA, Engum SA, Ruble CA, et al. Patch esophagoplasty using AlloDerm as a tissue scaffold. J Pediatr Surg. 2001;36:266–8.

    Article  PubMed  CAS  Google Scholar 

  82. White JK, Agnihotri AK, Titus JS, et al. A stentless trileaflet valve from a sheet of decellularized porcine small intestinal submucosa. Ann Thorac Surg. 2005;80:704–7.

    Article  PubMed  Google Scholar 

  83. Gabouev AI, Schultheiss D, Mertsching H, et al. In vitro construction of urinary bladder wall using porcine primary cells reseeded on acellularized bladder matrix and small intestinal submucosa. Int J Artif Organs. 2003;26:935–42.

    PubMed  CAS  Google Scholar 

  84. Badylak SF, Vorp DA, Spievack AR, et al. Esophageal reconstruction with ECM and muscle tissue in a dog model. J Surg Res. 2005;128:87–97.

    Article  PubMed  Google Scholar 

  85. Mertsching H, Schanz J, Steger V, et al. Generation and transplantation of an autologous vascularized bioartificial human tissue. Transplantation. 2009;88:203–10.

    Article  PubMed  Google Scholar 

  86. Lin P, Chan WC, Badylak SF, et al. Assessing porcine liver-derived biomatrix for hepatic tissue engineering. Tissue Eng. 2004;10:1046–53.

    PubMed  CAS  Google Scholar 

  87. Linke K, Schanz J, Hansmann J, et al. Engineered liver-like tissue on a capillarized matrix for applied research. Tissue Eng. 2007;13:2699–707.

    Article  PubMed  CAS  Google Scholar 

  88. Nahmias Y, Schwartz RE, Hu WS, et al. Endothelium-mediated hepatocyte recruitment in the establishment of liver-like tissue in vitro. Tissue Eng. 2006;12:1627–38.

    Article  PubMed  CAS  Google Scholar 

  89. Mitaka T, Sato F, Mizuguchi T, et al. Reconstruction of hepatic organoid by rat small hepatocytes and hepatic nonparenchymal cells. Hepatology. 1999;29:111–25.

    Article  PubMed  CAS  Google Scholar 

  90. Michalopoulos GK, Bowen WC, Zajac VF, et al. Morphogenetic events in mixed cultures of rat hepatocytes and nonparenchymal cells maintained in biological matrices in the presence of hepatocyte growth factor and epidermal growth factor. Hepatology. 1999;29:90–100.

    Article  PubMed  CAS  Google Scholar 

  91. Harada K, Mitaka T, Miyamoto S, et al. Rapid formation of hepatic organoid in collagen sponge by rat small hepatocytes and hepatic nonparenchymal cells. J Hepatol. 2003;39:716–23.

    Article  PubMed  CAS  Google Scholar 

  92. Soto-Gutierrez A, Navarro-Alvarez N, Yagi H, et al. Engineering of an hepatic organoid to develop liver assist devices. Cell Transplant. 2010;19:815–22.

    Article  PubMed  Google Scholar 

  93. Floden EW, Malak SF, Basil-Jones MM, et al. Biophysical characterization of ovine forestomach extracellular matrix biomaterials. J Biomed Mater Res B Appl Biomater. 2011;96:67–75.

    PubMed  Google Scholar 

  94. Soto-Gutierrez A, Zhang L, Medberry C, et al. A whole-organ regenerative medicine approach for liver replacement. Tissue Eng Part C Methods. 2011;17:677–86.

    Article  PubMed  CAS  Google Scholar 

  95. Baptista PM, Siddiqui MM, Lozier G, et al. The use of whole organ decellularization for the generation of a vascularized liver organoid. Hepatology 2011;53(2):604–17.

    Google Scholar 

  96. Sancho-Bru P, Najimi M, Caruso M, et al. Stem and progenitor cells for liver repopulation: can we standardise the process from bench to bedside? Gut. 2009;58:594–603.

    Article  PubMed  CAS  Google Scholar 

Download references

Acknowledgments

We thank Keio University for a special Grant-in-Aid for Innovative Collaborative Research Projects, a grant from the Japan Society for the Promotion of Science KAKENHI (23689059), Takeda Science Foundation to H.Y. and the National Institutes of Health (DK083556) to A.S.-G.

Author information

Authors and Affiliations

Authors

Corresponding authors

Correspondence to Alejandro Soto-Gutierrez or Yuko Kitagawa.

Rights and permissions

Reprints and permissions

About this article

Cite this article

Yagi, H., Soto-Gutierrez, A. & Kitagawa, Y. Whole-organ re-engineering: a regenerative medicine approach in digestive surgery for organ replacement. Surg Today 43, 587–594 (2013). https://doi.org/10.1007/s00595-012-0396-1

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s00595-012-0396-1

Keywords

Navigation