Skip to main content

Advertisement

Log in

Differentiating rectal carcinoma by an immunohistological analysis of carcinomas of pelvic organs based on the NCBI Literature Survey and the Human Protein Atlas database

  • Review Article
  • Published:
Surgery Today Aims and scope Submit manuscript

Abstract

The treatments and prognoses of pelvic organ carcinomas differ, depending on whether the primary tumor originated in the rectum, urinary bladder, prostate, ovary, or uterus; therefore, it is essential to diagnose pathologically the primary origin and stages of these tumors. To establish the panels of immunohistochemical markers for differential diagnosis, we reviewed 91 of the NCBI articles on these topics and found that the results correlated closely with those of the public protein database, the Human Protein Atlas. The results revealed the panels of immunohistochemical markers for the differential diagnosis of rectal adenocarcinoma, in which [+] designates positivity in rectal adenocarcinoma and [−] designates negativity in rectal adenocarcinoma: from bladder adenocarcinoma, CDX2[+], VIL1[+], KRT7[−], THBD[−] and UPK3A[−]; from prostate adenocarcinoma, CDX2[+], VIL1[+], CEACAM5[+], KLK3(PSA)[−], ACPP(PAP)[−] and SLC45A3(prostein)[−]; and from ovarian mucinous adenocarcinoma, CEACAM5[+], VIL1[+], CDX2[+], KRT7[−] and MUC5AC[−]. The panels of markers distinguishing ovarian serous adenocarcinoma, cervical carcinoma, and endometrial adenocarcinoma were also represented. Such a comprehensive review on the differential diagnosis of carcinomas of pelvic organs has not been reported before. Thus, much information has been accumulated in public databases to provide an invaluable resource for clinicians and researchers.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Subscribe and save

Springer+ Basic
EUR 32.99 /Month
  • Get 10 units per month
  • Download Article/Chapter or Ebook
  • 1 Unit = 1 Article or 1 Chapter
  • Cancel anytime
Subscribe now

Buy Now

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3

Similar content being viewed by others

Abbreviations

IHC:

Immunohistochemistry

H–E:

Hematoxylin and eosin

LNs:

Lymph nodes

HPA:

Human Protein Atlas

NCBI:

National Center for Biotechnology Information

HPR:

Human Proteome Resource

KRT:

Keratin

IF:

Intermediate filament

CEA:

Carcinoembryonic antigen

CEACAM5:

Carcinoembryonic antigen-related cell adhesion molecule 5

CDX2:

Caudal type homeobox 2

VIL1:

Villin 1

THBD:

Thrombomodulin

UPK3A:

Uroplakin 3A

KLK3:

Kallikrein-related peptidase 3

PSA:

Prostate-specific antigen

ACPP:

Acid phosphatase, prostate

PAP:

Prostatic acid phosphatase

SLC45A3:

Solute carrier family 45, member 3

MUC5AC:

Mucin 5AC, oligomeric mucus/gel-forming

WT:

Wilms’ tumor

CDKN2A:

Cyclin-dependent kinase inhibitor 2A

HPV:

Human papillomavirus

VIM:

Vimentin

ESR1:

Estrogen receptor 1

PR:

Progesterone receptor

References

  1. Miura K, Kobayashi T, Funayama Y, Fukushima K, Ogawa H, Oyama A, et al. Giant T4 rectal carcinoma mimicking urinary bladder adenocarcinoma accurately diagnosed by immunohistochemistry and successfully treated with total pelvic exenteration: report of a case. Surg Today. 2008;38:261–5.

    Article  PubMed  Google Scholar 

  2. Giuliani A, Galati G, Demoro M, Scimò M, Ciardi A, Basso L. Endoluminal metastasis of colon cancer to the urinary bladder via the ureter: report of a case. Surg Today. 2010;40:1093–6.

    Article  PubMed  Google Scholar 

  3. Uhlén M, Björling E, Agaton C, Szigyarto CA, Amini B, Andersen E, et al. A human protein atlas for normal and cancer tissues based on antibody proteomics. Mol Cell Proteomics. 2005;4:1920–32.

    Article  PubMed  CAS  Google Scholar 

  4. Acs G, Pasha T, Zhang PJ. WT1 is differentially expressed in serous, endometrioid, clear cell, and mucinous carcinomas of the peritoneum, fallopian tube, ovary, and endometrium. Int J Gynecol Pathol. 2004;23:110–8.

    Article  PubMed  Google Scholar 

  5. Adley BP, Yang XJ. Application of alpha-methylacyl coenzyme A racemase immunohistochemistry in the diagnosis of prostate cancer: a review. Anal Quant Cytol Histol. 2006;28:1–13.

    PubMed  Google Scholar 

  6. Albarracin CT, Jafri J, Montag AG, Hart J, Kuan SF. Differential expression of MUC2 and MUC5AC mucin genes in primary ovarian and metastatic colonic carcinoma. Hum Pathol. 2000;31:672–7.

    Article  PubMed  CAS  Google Scholar 

  7. Alkushi A, Irving J, Hsu F, Dupuis B, Liu CL, Rijn M, et al. Immunoprofile of cervical and endometrial adenocarcinomas using a tissue microarray. Virchows Arch. 2003;442:271–7.

    PubMed  CAS  Google Scholar 

  8. Ansari-Lari MA, Staebler A, Zaino RJ, Shah KV, Ronnett BM. Distinction of endocervical and endometrial adenocarcinomas: immunohistochemical p16 expression correlated with human papillomavirus (HPV) DNA detection. Am J Surg Pathol. 2004;28:160–7.

    Article  PubMed  Google Scholar 

  9. Aslan G, Irer B, Tuna B, Yorukoglu K, Saatcioglu F, Celebi I. Analysis of NKX3.1 expression in prostate cancer tissues and correlation with clinicopathologic features. Pathol Res Pract. 2006;202:93–8.

    Article  PubMed  CAS  Google Scholar 

  10. Ather MH, Abbas F, Faruqui N, Israr M, Pervez S. Expression of pS2 in prostate cancer correlates with grade and Chromogranin A expression but not with stage. BMC Urol. 2004;4:14.

    Article  PubMed  CAS  Google Scholar 

  11. Bacchi CE, Gown AM. Distribution and pattern of expression of villin, a gastrointestinal-associated cytoskeletal protein, in human carcinomas: a study employing paraffin-embedded tissue. Lab Invest. 1991;64:418–24.

    PubMed  CAS  Google Scholar 

  12. Bassily NH, Vallorosi CJ, Akdas G, Montie JE, Rubin MA. Coordinate expression of cytokeratins 7 and 20 in prostate adenocarcinoma and bladder urothelial carcinoma. Am J Clin Pathol. 2000;113:383–8.

    Article  PubMed  CAS  Google Scholar 

  13. Castrillon DH, Lee KR, Nucci MR. Distinction between endometrial and endocervical adenocarcinoma: an immunohistochemical study. Int J Gynecol Pathol. 2002;21:4–10.

    Article  PubMed  Google Scholar 

  14. Chou YY, Jeng YM, Kao HL, Chen T, Mao TL, Lin MC. Differentiation of ovarian mucinous carcinoma and metastatic colorectal adenocarcinoma by immunostaining with beta-catenin. Histopathology. 2003;43:151–6.

    Article  PubMed  Google Scholar 

  15. Chuang AY, DeMarzo AM, Veltri RW, Sharma RB, Bieberich CJ, Epstein JI. Immunohistochemical differentiation of high-grade prostate carcinoma from urothelial carcinoma. Am J Surg Pathol. 2007;31:1246–55.

    Article  PubMed  Google Scholar 

  16. Coosemans A, Moerman P, Verbist G, Maes W, Neven P, Vergote I, et al. Wilms’ tumor gene 1 (WT1) in endometrial carcinoma. Gynecol Oncol. 2008;111:502–8.

    Article  PubMed  CAS  Google Scholar 

  17. Cozzi PJ, Wang J, Delprado W, Perkins AC, Allen BJ, Russell PJ, et al. MUC1, MUC2, MUC4, MUC5AC and MUC6 expression in the progression of prostate cancer. Clin Exp Metastasis. 2005;22:565–73.

    Article  PubMed  CAS  Google Scholar 

  18. Dabbs DJ, Geisinger KR, Norris HT. Intermediate filaments in endometrial and endocervical carcinomas. The diagnostic utility of vimentin patterns. Am J Surg Pathol. 1986;10:568–76.

    Article  PubMed  CAS  Google Scholar 

  19. Deavers MT, Malpica A, Silva EG. Immunohistochemistry in gynecological pathology. Int J Gynecol Cancer. 2003;13:567–79.

    Article  PubMed  CAS  Google Scholar 

  20. Dennis JL, Hvidsten TR, Wit EC, Komorowski J, Bell AK, Downie I, et al. Markers of adenocarcinoma characteristic of the site of origin: development of a diagnostic algorithm. Clin Cancer Res. 2005;11:3766–72.

    Article  PubMed  CAS  Google Scholar 

  21. Dennis JL, Oien KA. Hunting the primary: novel strategies for defining the origin of tumours. J Pathol. 2005;205:236–47.

    Article  PubMed  CAS  Google Scholar 

  22. El-Ghobashy AA, Shaaban AM, Innes J, Prime W, Herrington CS. Differential expression of cyclin-dependent kinase inhibitors and apoptosis-related proteins in endocervical lesions. Eur J Cancer. 2007;43:2011–8.

    Article  PubMed  CAS  Google Scholar 

  23. Fraggetta F, Pelosi G, Cafici A, Scollo P, Nuciforo P, Viale G. CDX2 immunoreactivity in primary and metastatic ovarian mucinous tumours. Virchows Arch. 2003;443:782–6.

    Article  PubMed  CAS  Google Scholar 

  24. Frierson HF Jr, Moskaluk CA, Powell SM, Zhang H, Cerilli LA, Stoler MH, et al. Large-scale molecular and tissue microarray analysis of mesothelin expression in common human carcinomas. Hum Pathol. 2003;34:605–9.

    Article  PubMed  CAS  Google Scholar 

  25. Fujiwara H, Tortolero-Luna G, Mitchell MF, Koulos JP, Wright TC Jr. Adenocarcinoma of the cervix. Expression and clinical significance of estrogen and progesterone receptors. Cancer. 1997;79:505–12.

    Article  PubMed  CAS  Google Scholar 

  26. Geller SA, Dhall D, Alsabeh R. Application of immunohistochemistry to liver and gastrointestinal neoplasms: liver, stomach, colon, and pancreas. Arch Pathol Lab Med. 2008;132:490–9.

    PubMed  Google Scholar 

  27. Genega EM, Hutchinson B, Reuter VE, Gaudin PB. Immunophenotype of high-grade prostatic adenocarcinoma and urothelial carcinoma. Mod Pathol. 2000;13:1186–91.

    Article  PubMed  CAS  Google Scholar 

  28. Ghandour FA, Attanoos R, Nahar K, Gee JW, Bigrigg A, Ismail SM. Immunocytochemical localization of oestrogen and progesterone receptors in primary adenocarcinoma of the cervix. Histopathology. 1994;24:49–55.

    Article  PubMed  CAS  Google Scholar 

  29. Goldstein NS. Immunophenotypic characterization of 225 prostate adenocarcinomas with intermediate or high Gleason scores. Am J Clin Pathol. 2002;117:471–7.

    Article  PubMed  Google Scholar 

  30. Groisman GM, Meir A, Sabo E. The value of Cdx2 immunostaining in differentiating primary ovarian carcinomas from colonic carcinomas metastatic to the ovaries. Int J Gynecol Pathol. 2004;23:52–7.

    Article  PubMed  Google Scholar 

  31. Hameed O, Humphrey PA. Immunohistochemistry in diagnostic surgical pathology of the prostate. Semin Diagn Pathol. 2005;22:88–104.

    Article  PubMed  Google Scholar 

  32. Hammerich KH, Ayala GE, Wheeler TM. Application of immunohistochemistry to the genitourinary system (prostate, urinary bladder, testis, and kidney). Arch Pathol Lab Med. 2008;132:432–40.

    PubMed  Google Scholar 

  33. Herawi M, De Marzo AM, Kristiansen G, Epstein JI. Expression of CDX2 in benign tissue and adenocarcinoma of the prostate. Hum Pathol. 2007;38:72–8.

    Article  PubMed  CAS  Google Scholar 

  34. Humphrey PA. Diagnosis of adenocarcinoma in prostate needle biopsy tissue. J Clin Pathol. 2007;60:35–42.

    Article  PubMed  CAS  Google Scholar 

  35. Hylander B, Repasky E, Shrikant P, Intengan M, Beck A, Driscoll D, et al. Expression of Wilms tumor gene (WT1) in epithelial ovarian cancer. Gynecol Oncol. 2006;101:12–7.

    Article  PubMed  CAS  Google Scholar 

  36. Ishikawa M, Fujii T, Masumoto N, Saito M, Mukai M, Nindl I, et al. Correlation of p16INK4A overexpression with human papillomavirus infection in cervical adenocarcinomas. Int J Gynecol Pathol. 2003;22:378–85.

    Article  PubMed  Google Scholar 

  37. Ji H, Isacson C, Seidman JD, Kurman RJ, Ronnett BM. Cytokeratins 7 and 20, Dpc4, and MUC5AC in the distinction of metastatic mucinous carcinomas in the ovary from primary ovarian mucinous tumors: Dpc4 assists in identifying metastatic pancreatic carcinomas. Int J Gynecol Pathol. 2002;21:391–400.

    Article  PubMed  Google Scholar 

  38. Jiang Z, Fanger GR, Woda BA, Banner BF, Algate P, Dresser K, et al. Expression of alpha-methylacyl-CoA racemase (P504 s) in various malignant neoplasms and normal tissues: astudy of 761 cases. Hum Pathol. 2003;34:792–6.

    Article  PubMed  CAS  Google Scholar 

  39. Koshiyama M, Yoshida M, Konishi M, Takemura M, Yura Y, Matsushita K, et al. Expression of pS2 protein in endometrial carcinomas: correlation with clinicopathologic features and sex steroid receptor status. Int J Cancer. 1997;74:237–44.

    Article  PubMed  CAS  Google Scholar 

  40. Kunze E, Krassenkova I, Fayyazi A. Tumor-associated neoexpression of the pS2 peptide and MUC5AC mucin in primary adenocarcinomas and signet ring cell carcinomas of the urinary bladder. Histol Histopathol. 2008;23:539–48.

    PubMed  CAS  Google Scholar 

  41. Lagendijk JH, Mullink H, Van Diest PJ, Meijer GA, Meijer CJ. Tracing the origin of adenocarcinomas with unknown primary using immunohistochemistry: differential diagnosis between colonic and ovarian carcinomas as primary sites. Hum Pathol. 1998;29:491–7.

    Article  PubMed  CAS  Google Scholar 

  42. Lagendijk JH, Mullink H, van Diest PJ, Meijer GA, Meijer CJ. Immunohistochemical differentiation between primary adenocarcinomas of the ovary and ovarian metastases of colonic and breast origin. Comparison between a statistical and an intuitive approach. J Clin Pathol. 1999;52:283–90.

    Article  PubMed  CAS  Google Scholar 

  43. Lane Z, Epstein JI, Ayub S, Netto GJ. Prostatic adenocarcinoma in colorectal biopsy: clinical and pathologic features. Hum Pathol. 2008;39:543–9.

    Article  PubMed  Google Scholar 

  44. Lau SK, Weiss LM, Chu PG. Differential expression of MUC1, MUC2, and MUC5AC in carcinomas of various sites: an immunohistochemical study. Am J Clin Pathol. 2004;122:61–9.

    Article  PubMed  Google Scholar 

  45. Lee BH, Hecht JL, Pinkus JL, Pinkus GS. WT1, estrogen receptor, and progesterone receptor as markers for breast or ovarian primary sites in metastatic adenocarcinoma to body fluids. Am J Clin Pathol. 2002;117:745–50.

    Article  PubMed  Google Scholar 

  46. Lipponen PK, Eskelinen MJ. Expression of pS2 protein in transitional cell bladder tumours. J Pathol. 1994;173:327–32.

    Article  PubMed  CAS  Google Scholar 

  47. Logani S, Oliva E, Arnell PM, Amin MB, Young RH. Use of novel immunohistochemical markers expressed in colonic adenocarcinoma to distinguish primary ovarian tumors from metastatic colorectal carcinoma. Mod Pathol. 2005;18:19–25.

    Article  PubMed  CAS  Google Scholar 

  48. Luo J, Zha S, Gage WR, Dunn TA, Hicks JL, Bennett CJ, et al. Alpha-methylacyl-CoA racemase: a new molecular marker for prostate cancer. Cancer Res. 2002;62:2220–6.

    PubMed  CAS  Google Scholar 

  49. Luqmani YA, Ryall G, Shousha S, Coombes RC. An immunohistochemical survey of pS2 expression in human epithelial cancers. Int J Cancer. 1992;50:302–4.

    Article  PubMed  CAS  Google Scholar 

  50. Masood S, Rhatigan RM, Wilkinson EW, Barwick KW, Wilson WJ. Expression and prognostic significance of estrogen and progesterone receptors in adenocarcinoma of the uterine cervix. An immunocytochemical study. Cancer. 1993;72:511–8.

    Article  PubMed  CAS  Google Scholar 

  51. McCluggage WG, Sumathi VP, McBride HA, Patterson A. A panel of immunohistochemical stains, including carcinoembryonic antigen, vimentin, and estrogen receptor, aids the distinction between primary endometrial and endocervical adenocarcinomas. Int J Gynecol Pathol. 2002;21:11–5.

    Article  PubMed  Google Scholar 

  52. McCluggage WG, Jenkins D. p16 immunoreactivity may assist in the distinction between endometrial and endocervical adenocarcinoma. Int J Gynecol Pathol. 2003;22:231–5.

    Article  PubMed  CAS  Google Scholar 

  53. McCluggage WG, Shah R, Connolly LE, McBride HA. Intestinal-type cervical adenocarcinoma in situ and adenocarcinoma exhibit a partial enteric immunophenotype with consistent expression of CDX2. Int J Gynecol Pathol. 2008;27:92–100.

    Article  PubMed  CAS  Google Scholar 

  54. Mhawech P, Uchida T, Pelte MF. Immunohistochemical profile of high-grade urothelial bladder carcinoma and prostate adenocarcinoma. Hum Pathol. 2002;33:1136–40.

    Article  PubMed  Google Scholar 

  55. Mittal K, Soslow R, McCluggage WG. Application of immunohistochemistry to gynecologic pathology. Arch Pathol Lab Med. 2008;132:402–23.

    PubMed  Google Scholar 

  56. Moll R, Robine S, Dudouet B, Louvard D. Villin: a cytoskeletal protein and a differentiation marker expressed in some human adenocarcinomas. Virchows Arch B Cell Pathol Incl Mol Pathol. 1987;54:155–69.

    Article  PubMed  CAS  Google Scholar 

  57. Moll R, Wu XR, Lin JH, Sun TT. Uroplakins, specific membrane proteins of urothelial umbrella cells, as histological markers of metastatic transitional cell carcinomas. Am J Pathol. 1995;147:1383–97.

    PubMed  CAS  Google Scholar 

  58. Momburg F, Moldenhauer G, Hämmerling GJ, Möller P. Immunohistochemical study of the expression of a Mr 34,000 human epithelium-specific surface glycoprotein in normal and malignant tissues. Cancer Res. 1987;47:2883–91.

    PubMed  CAS  Google Scholar 

  59. Morrison C, Merati K, Marsh WL Jr, De Lott L, Cohn DE, Young G, et al. The mucin expression profile of endometrial carcinoma and correlation with clinical-pathologic parameters. Appl Immunohistochem Mol Morphol. 2007;15:426–31.

    Article  PubMed  CAS  Google Scholar 

  60. Moskaluk CA, Zhang H, Powell SM, Cerilli LA, Hampton GM, Frierson HF Jr. Cdx2 protein expression in normal and malignant human tissues: an immunohistochemical survey using tissue microarrays. Mod Pathol. 2003;16:913–9.

    Article  PubMed  Google Scholar 

  61. Nakatsuka S, Oji Y, Horiuchi T, Kanda T, Kitagawa M, Takeuchi T, et al. Immunohistochemical detection of WT1 protein in a variety of cancer cells. Mod Pathol. 2006;19:804–14.

    PubMed  CAS  Google Scholar 

  62. Nassar A, Amin MB, Sexton DG, Cohen C. Utility of alpha-methylacyl coenzyme A racemase (p504 s antibody) as a diagnostic immunohistochemical marker for cancer. Appl Immunohistochem Mol Morphol. 2005;13:252–5.

    Article  PubMed  CAS  Google Scholar 

  63. Negri G, Egarter-Vigl E, Kasal A, Romano F, Haitel A, Mian C. p16INK4a is a useful marker for the diagnosis of adenocarcinoma of the cervix uteri and its precursors: an immunohistochemical study with immunocytochemical correlations. Am J Surg Pathol. 2003;27:187–93.

    Article  PubMed  Google Scholar 

  64. Netinatsunthorn W, Hanprasertpong J, Dechsukhum C, Leetanaporn R, Geater A. WT1 gene expression as a prognostic marker in advanced serous epithelial ovarian carcinoma: an immunohistochemical study. BMC Cancer. 2006;6:90.

    Article  PubMed  CAS  Google Scholar 

  65. Nishizuka S, Chen ST, Gwadry FG, Alexander J, Major SM, Scherf U, et al. Diagnostic markers that distinguish colon and ovarian adenocarcinomas: identification by genomic, proteomic, and tissue array profiling. Cancer Res. 2003;63:5243–50.

    PubMed  CAS  Google Scholar 

  66. Nur S, Chuang L, Ramaswamy G. Immunohistochemical characterization of cancer antigen in uterine cancers. Int J Gynecol Cancer. 2006;16:1903–10.

    Article  PubMed  CAS  Google Scholar 

  67. Obama H, Obama K, Takemoto M, Soejima Y, Shirahama T, Ohi Y, et al. Expression of thrombomodulin in the epithelium of the urinary bladder: a possible source of urinary thrombomodulin. Anticancer Res. 1999;19:1143–7.

    PubMed  CAS  Google Scholar 

  68. Ohno S, Dohi S, Ohno Y, Kyo S, Sugiyama H, Suzuki N, et al. Immunohistochemical detection of WT1 protein in endometrial cancer. Anticancer Res. 2009;29:1691–5.

    PubMed  Google Scholar 

  69. O’Neill CJ, McBride HA, Connolly LE, Deavers MT, Malpica A, McCluggage WG. High-grade ovarian serous carcinoma exhibits significantly higher p16 expression than low-grade serous carcinoma and serous borderline tumour. Histopathology. 2007;50:773–9.

    Article  PubMed  Google Scholar 

  70. Ordóñez NG. Thrombomodulin expression in transitional cell carcinoma. Am J Clin Pathol. 1998;110:385–90.

    PubMed  Google Scholar 

  71. Owens CL, Epstein JI, Netto GJ. Distinguishing prostatic from colorectal adenocarcinoma on biopsy samples: the role of morphology and immunohistochemistry. Arch Pathol Lab Med. 2007;131:599–603.

    PubMed  Google Scholar 

  72. Parker DC, Folpe AL, Bell J, Oliva E, Young RH, Cohen C, et al. Potential utility of uroplakin III, thrombomodulin, high molecular weight cytokeratin, and cytokeratin 20 in noninvasive, invasive, and metastatic urothelial (transitional cell) carcinomas. Am J Surg Pathol. 2003;27:1–10.

    Article  PubMed  Google Scholar 

  73. Pavlidis N, Fizazi K. Cancer of unknown primary (CUP). Crit Rev Oncol Hematol. 2005;54:243–50.

    Article  PubMed  Google Scholar 

  74. Poczatek RB, Myers RB, Manne U, Oelschlager DK, Weiss HL, Bostwick DG, et al. Ep-Cam levels in prostatic adenocarcinoma and prostatic intraepithelial neoplasia. J Urol. 1999;162:1462–6.

    Article  PubMed  CAS  Google Scholar 

  75. Prat J. Ovarian carcinomas, including secondary tumors: diagnostically challenging areas. Mod Pathol. 2005;18(Suppl 2):S99–111.

    Article  PubMed  Google Scholar 

  76. Raspollini MR, Nesi G, Baroni G, Girardi LR, Taddei GL. Immunohistochemistry in the differential diagnosis between primary and secondary intestinal adenocarcinoma of the urinary bladder. Appl Immunohistochem Mol Morphol. 2005;13:358–62.

    Article  PubMed  Google Scholar 

  77. Riethdorf L, O’Connell JT, Riethdorf S, Cviko A, Crum CP. Differential expression of MUC2 and MUC5AC in benign and malignant glandular lesions of the cervix uteri. Virchows Arch. 2000;437:365–71.

    Article  PubMed  CAS  Google Scholar 

  78. Rocha AS, Bozzetti MC, Kirschnick LS, Edelweiss MI. Antibody anti-p16(INK4a) in cervical cytology. Acta Cytol. 2009;53:253–62.

    Article  PubMed  Google Scholar 

  79. Rosenblatt R, Jonmarker S, Lewensohn R, Egevad L, Sherif A, Kälkner KM, et al. Current status of prognostic immunohistochemical markers for urothelial bladder cancer. Tumour Biol. 2008;29:311–22.

    Article  PubMed  CAS  Google Scholar 

  80. Saegusa M, Hashimura M, Hara A, Okayasu I. Up-regulation of pS2 expression during the development of adenocarcinomas but not squamous cell carcinomas of the uterine cervix, independently of expression of c-jun or oestrogen and progesterone receptors. J Pathol. 2000;190:554–63.

    Article  PubMed  CAS  Google Scholar 

  81. Shimizu M, Toki T, Takagi Y, Konishi I, Fujii S. Immunohistochemical detection of the Wilms’ tumor gene (WT1) in epithelial ovarian tumors. Int J Gynecol Pathol. 2000;19:158–63.

    Article  PubMed  CAS  Google Scholar 

  82. Shutter J, Atkins KA, Ghartey K, Herzog TJ. Clinical applications of immunohistochemistry in gynecological malignancies. Int J Gynecol Cancer. 2007;17:311–5.

    Article  PubMed  CAS  Google Scholar 

  83. Staebler A, Sherman ME, Zaino RJ, Ronnett BM. Hormone receptor immunohistochemistry and human papillomavirus in situ hybridization are useful for distinguishing endocervical and endometrial adenocarcinomas. Am J Surg Pathol. 2002;26:998–1006.

    Article  PubMed  Google Scholar 

  84. Suh N, Yang XJ, Tretiakova MS, Humphrey PA, Wang HL. Value of CDX2, villin, and alpha-methylacyl coenzyme A racemase immunostains in the distinction between primary adenocarcinoma of the bladder and secondary colorectal adenocarcinoma. Mod Pathol. 2005;18:1217–22.

    Article  PubMed  CAS  Google Scholar 

  85. Sullivan LM, Smolkin ME, Frierson HF Jr, Galgano MT. Comprehensive evaluation of CDX2 in invasive cervical adenocarcinomas: immunopositivity in the absence of overt colorectal morphology. Am J Surg Pathol. 2008;32:1608–12.

    Article  PubMed  Google Scholar 

  86. Tamboli P, Mohsin SK, Hailemariam S, Amin MB. Colonic adenocarcinoma metastatic to the urinary tract versus primary tumors of the urinary tract with glandular differentiation: a report of 7 cases and investigation using a limited immunohistochemical panel. Arch Pathol Lab Med. 2002;126:1057–63.

    PubMed  Google Scholar 

  87. Torenbeek R, Lagendijk JH, Van Diest PJ, Bril H, van de Molengraft FJ, Meijer CJ. Value of a panel of antibodies to identify the primary origin of adenocarcinomas presenting as bladder carcinoma. Histopathology. 1998;32:20–7.

    Article  PubMed  CAS  Google Scholar 

  88. Tornillo L, Moch H, Diener PA, Lugli A, Singer G. CDX-2 immunostaining in primary and secondary ovarian carcinomas. J Clin Pathol. 2004;57:641–3.

    Article  PubMed  CAS  Google Scholar 

  89. Vang R, Gown AM, Barry TS, Wheeler DT, Ronnett BM. Immunohistochemistry for estrogen and progesterone receptors in the distinction of primary and metastatic mucinous tumors in the ovary: an analysis of 124 cases. Mod Pathol. 2006;19:97–105.

    Article  PubMed  CAS  Google Scholar 

  90. Vang R, Gown AM, Wu LS, Barry TS, Wheeler DT, Yemelyanova A, et al. Immunohistochemical expression of CDX2 in primary ovarian mucinous tumors and metastatic mucinous carcinomas involving the ovary: comparison with CK20 and correlation with coordinate expression of CK7. Mod Pathol. 2006;19:1421–8.

    Article  PubMed  CAS  Google Scholar 

  91. Varma M, Jasani B. Diagnostic utility of immunohistochemistry in morphologically difficult prostate cancer: review of current literature. Histopathology. 2005;47:1–16.

    Article  PubMed  CAS  Google Scholar 

  92. Wang HL, Lu DW, Yerian LM, Alsikafi N, Steinberg G, Hart J, et al. Immunohistochemical distinction between primary adenocarcinoma of the bladder and secondary colorectal adenocarcinoma. Am J Surg Pathol. 2001;25:1380–7.

    Article  PubMed  CAS  Google Scholar 

  93. Wauters CC, Smedts F, Gerrits LG, Bosman FT, Ramaekers FC. Keratins 7 and 20 as diagnostic markers of carcinomas metastatic to the ovary. Hum Pathol. 1995;26:852–5.

    Article  PubMed  CAS  Google Scholar 

  94. Went PT, Lugli A, Meier S, Bundi M, Mirlacher M, Sauter G, et al. Frequent EpCam protein expression in human carcinomas. Hum Pathol. 2004;35:122–8.

    Article  PubMed  CAS  Google Scholar 

  95. Gold P, Freedman SO. Demonstration of tumor-specific antigens in human colonic carcinomata by immunological tolerance and absorption techniques. J Exp Med. 1965;121:439–62.

    Article  PubMed  CAS  Google Scholar 

  96. Schrewe H, Thompson J, Bona M, Hefta LJ, Maruya A, Hassauer M, et al. Cloning of the complete gene for carcinoembryonic antigen: analysis of its promoter indicates a region conveying cell type-specific expression. Mol Cell Biol. 1990;10:2738–48.

    PubMed  CAS  Google Scholar 

  97. Benchimol S, Fuks A, Jothy S, Beauchemin N, Shirota K, Stanners CP. Carcinoembryonic antigen, a human tumor marker, functions as an intercellular adhesion molecule. Cell. 1989;57:327–34.

    Article  PubMed  CAS  Google Scholar 

  98. Drummond F, Putt W, Fox M, Edwards YH. Cloning and chromosome assignment of the human CDX2 gene. Ann Hum Genet. 1997;61:393–400.

    PubMed  CAS  Google Scholar 

  99. Bai YQ, Miyake S, Iwai T, Yuasa Y. CDX2, a homeobox transcription factor, upregulates transcription of the p21/WAF1/CIP1 gene. Oncogene. 2003;22:7942–9.

    Article  PubMed  CAS  Google Scholar 

  100. Fath KR, Obenauf SD, Burgess DR. Cytoskeletal protein and mRNA accumulation during brush border formation in adult chicken enterocytes. Development. 1990;109:449–59.

    PubMed  CAS  Google Scholar 

  101. Friederich E, Vancompernolle K, Louvard D, Vandekerckhove J. Villin function in the organization of the actin cytoskeleton. Correlation of in vivo effects to its biochemical activities in vitro. J Biol Chem. 1999;274:26751–60.

    Article  PubMed  CAS  Google Scholar 

  102. Nadji M, Tabei SZ, Castro A, Chu TM, Morales AR. Prostatic origin of tumors. An immunohistochemical study. Am J Clin Pathol. 1980;73:735–9.

    PubMed  CAS  Google Scholar 

  103. Nadji M, Tabei SZ, Castro A, Chu TM, Murphy GP, Wang MC, et al. Prostatic-specific antigen: an immunohistologic marker for prostatic neoplasms. Cancer. 1981;48:1229–32.

    Article  PubMed  CAS  Google Scholar 

  104. Diamandis EP, Yousef GM, Luo LY, Magklara A, Obiezu CV. The new human kallikrein gene family: implications in carcinogenesis. Trends Endocrinol Metab. 2000;11:54–60.

    Article  PubMed  CAS  Google Scholar 

  105. Stone S, Dayananth P, Jiang P, Weaver-Feldhaus JM, Tavtigian SV, Cannon-Albright L, et al. Genomic structure, expression and mutational analysis of the P15 (MTS2) gene. Oncogene. 1995;11:987–91.

    PubMed  CAS  Google Scholar 

  106. Glendening JM, Flores JF, Walker GJ, Stone S, Albino AP, Fountain JW. Homozygous loss of the p15INK4B gene (and not the p16INK4 gene) during tumor progression in a sporadic melanoma patient. Cancer Res. 1995;55:5531–5.

    PubMed  CAS  Google Scholar 

  107. Stone S, Jiang P, Dayananth P, Tavtigian SV, Katcher H, Parry D, et al. Complex structure and regulation of the P16 (MTS1) locus. Cancer Res. 1995;55:2988–94.

    PubMed  CAS  Google Scholar 

  108. Lukas J, Parry D, Aagaard L, Mann DJ, Bartkova J, Strauss M, et al. Retinoblastoma-protein-dependent cell-cycle inhibition by the tumour suppressor p16. Nature. 1995;375:503–6.

    Article  PubMed  CAS  Google Scholar 

  109. Clarke EJ, Allan V. Intermediate filaments: vimentin moves in. Curr Biol. 2002;12:R596–8.

    Article  PubMed  CAS  Google Scholar 

  110. Kaku T, Ogawa S, Kawano Y, Ohishi Y, Kobayashi H, Hirakawa T, et al. Histological classification of ovarian cancer. Med Electron Microsc. 2003;36:9–17.

    Article  PubMed  Google Scholar 

  111. McCluggage WG. A critical appraisal of the value of immunohistochemistry in diagnosis of uterine neoplasms. Adv Anat Pathol. 2004;11:162–71.

    Article  PubMed  Google Scholar 

  112. Thomas AA, Stephenson AJ, Campbell SC, Jones JS, Hansel DE. Clinicopathologic features and utility of immunohistochemical markers in signet-ring cell adenocarcinoma of the bladder. Hum Pathol. 2009;40:108–16.

    Article  PubMed  CAS  Google Scholar 

  113. Del Sordo R, Bellezza G, Colella R, Mameli MG, Sidoni A, Cavaliere A. Primary signet-ring cell carcinoma of the urinary bladder: a clinicopathologic and immunohistochemical study of 5 cases. Appl Immunohistochem Mol Morphol. 2009;17:18–22.

    Article  PubMed  Google Scholar 

Download references

Conflict of interest

Koh Miura and his co-authors have no conflict of interest.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Koh Miura.

Electronic supplementary material

Below is the link to the electronic supplementary material.

Supplementary Fig. 1. Representative examples of immunohistochemical expression retrieved from the HPA database. A, KRT7; B, ACPP; C, CEACAM5; D, WT1; E, CDX2; and F, PGR. The immunoreactivity for each marker A to F was represented as brown, orange, yellow, or white as retrieved from the database HPA, as explained below the figure.

Supplementary material 1 (XLS 39 kb)

Rights and permissions

Reprints and permissions

About this article

Cite this article

Miura, K., Ishida, K., Fujibuchi, W. et al. Differentiating rectal carcinoma by an immunohistological analysis of carcinomas of pelvic organs based on the NCBI Literature Survey and the Human Protein Atlas database. Surg Today 42, 515–525 (2012). https://doi.org/10.1007/s00595-012-0167-z

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s00595-012-0167-z

Keywords

Navigation