Skip to main content
Log in

Landiolol reduces coronary artery motion in an open-chest porcine model: implications for off-pump coronary artery bypass surgery

  • Short Communication
  • Published:
Surgery Today Aims and scope Submit manuscript

Abstract

Reduction of target coronary artery motion is imperative for successful off-pump coronary artery bypass surgery. We hypothesized that landiolol, a novel ultra-short-acting selective β-1 blocker, would reduce such coronary artery motion. To test this hypothesis, the motion of the left anterior descending artery of the porcine heart (n = 8) was analyzed by three-dimensional digital motion capture and reconstruction technology with or without continuous landiolol infusion. Landiolol (0.12 mg/kg/min) significantly decreased the heart rate (105 ± 16 vs. 90 ± 9 beats/min), three-dimensional distance moved (−20.4% vs. control), maximum velocity (−30.0% vs. control), acceleration (−31.1% vs. control), and deceleration (−28.6% vs. control) without inducing a significant change in the systolic blood pressure (85 ± 18 vs. 81 ± 22 mmHg), cardiac output (4.3 ± 1.4 vs. 4.1 ± 1.3 l/min), or pulmonary wedge pressure (7.8 ± 3.0 vs. 8.7 ± 2.9 mmHg). Landiolol reduces the heart rate and coronary artery motion with stable hemodynamics, which may facilitate performing precise anastomosis on the beating heart.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2

References

  1. Magee MJ, Coombs LP, Peterson ED, Mack MJ. Patient selection and current practice strategy for off-pump coronary artery bypass surgery. Circulation. 2003;108:II-9–14.

    Article  Google Scholar 

  2. Puskas JD, Edwards FH, Pappas PA, O’Brien S, Peterson ED, Kilgo P, et al. Off-pump techniques benefit men and women and narrow the disparity in mortality after coronary bypass grafting. Ann Thorac Surg. 2007;84:1447–56.

    Article  PubMed  Google Scholar 

  3. Hannan EL, Wu C, Smith CR, Higgins RSD, Carlson RE, Culliford AT, Gold JP, et al. Off-pump versus on-pump coronary artery bypass graft surgery: differences in short-term outcomes and in long-term mortality and need for subsequent revascularization. Circulation. 2007;116:1145–52.

    Article  PubMed  Google Scholar 

  4. Khan NE, De Souza A, Mister R, Flather M, Clague J, Davues S, et al. A randomized comparison of off-pump and on-pump multivessel coronary-artery bypass surgery. N Engl J Med. 2004;350:21–8.

    Article  PubMed  CAS  Google Scholar 

  5. Shroyer AL, Grover FL, Hatler B, Collins JF, McDonald GO, Kozora E, et al. On-pump versus off-pump coronary artery bypass surgery. N Engl J Med. 2009;361:1827–37.

    Article  PubMed  CAS  Google Scholar 

  6. Cooley DA. Con: beating-heart surgery for coronary revascularization: is it the most important development since the introduction of the heart–lung machine? Ann Thorac Surg. 2000;70:1779–81.

    Article  PubMed  CAS  Google Scholar 

  7. Borst C, Jansen EWL, Tulleken CAF, Grundeman PF, Beck HJM, Dongen JWF, et al. Coronary artery bypass grafting without interruption of native coronary flow using a novel anastomosis site restraining device “Octopus”. J Am Coll Cardiol. 1996;27:1356–64.

    Article  PubMed  CAS  Google Scholar 

  8. Bel A, Perrault LP, Faris B, Mouas C, Vilaine JP, Menasché P. Inhibition of the pacemaker current: a bradycardic therapy for off-pump coronary operations. Ann Thorac Surg. 1998;66:148–52.

    Article  PubMed  CAS  Google Scholar 

  9. Levy MN, Pappano AJ. The cardiac pump. In: Cardiovascular physiology. Philadelphia: Mosby; 2007. p. 66–7.

  10. Iguchi S, Iwamura H, Nishizaki M, Hayashi A, Senokuchi K, Kobayashi K, et al. Development of a highly cardioselective ultra short-acting beta-blocker, ONO-1101. Chem Pharm Bull. 1992;40:1462–9.

    Article  PubMed  CAS  Google Scholar 

  11. Sasao J, Tarver SD, Kindscher JD, Taneyama C, Benson KT, Goto H. In rabbits, landiolol, a new ultra-short-acting β-blocker, exerts a more potent negative chronotropic effect and less effect on blood pressure than esmolol. Can J Anesth. 2001;48:985–9.

    Article  PubMed  CAS  Google Scholar 

  12. Yoshida Y, Terajima K, Sato C, Akada S, Miyagi Y, Hongo T, et al. Clinical role and efficacy of landiolol in the intensive care unit. J Anesth. 2008;22:64–9.

    Article  PubMed  Google Scholar 

  13. Goto K, Shingu C, Miyamoto S, Miyakawa H, Noguchi T. The effect of landiolol on hemodynamics and left ventricular function in patients with coronary artery disease. J Clin Anesth. 2007;19:523–9.

    Article  PubMed  CAS  Google Scholar 

  14. Watanabe T, Omata S, Odamura M, Okada M, Nakamura Y, Yokoyama H. Three-dimensional quantification of cardiac surface motion: a newly developed three-dimensional digital motion-capture and reconstruction system for beating heart surgery. J Thorac Cardiovasc Surg. 2006;132:1162–71.

    Article  PubMed  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Hiroki Wakamatsu.

Rights and permissions

Reprints and permissions

About this article

Cite this article

Wakamatsu, H., Watanabe, T., Sato, Y. et al. Landiolol reduces coronary artery motion in an open-chest porcine model: implications for off-pump coronary artery bypass surgery. Surg Today 42, 205–208 (2012). https://doi.org/10.1007/s00595-011-0047-y

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s00595-011-0047-y

Keywords

Navigation