Skip to main content

Advertisement

Log in

Innate immune therapy with a Bacillus Calmette-Guérin cell wall skeleton after radical surgery for non-small cell lung cancer: A case-control study

  • Original Article
  • Published:
Surgery Today Aims and scope Submit manuscript

Abstract

Purpose

We investigated whether adjuvant immunotherapy with Bacillus Calmette-Guérin (BCG) cell wall skeleton (CWS) and surgical resection was better than resection, with or without other adjuvant therapy, for patients with non-small cell lung cancer (NSCLC).

Methods

The case group comprised 71 patients who underwent radical surgery for NSCLC, followed by BCG-CWS immunotherapy, with follow-up data available. The case-control study was designed with one control selected for each case-group patient. Each control was matched by pathological stage and year of birth (±5 years). BCG-CWS 200 μg was inoculated intracutaneously in the upper arm four times per week (sensitization phase); then at 4-week intervals (therapeutic phase).

Results

The case-group patients received 45 ± 22.6 (average ± SD) cycles of BCG-CWS inoculation. Overall 5-year and 10-year survival rates were 71% and 61% for the case-group patients, and 63% and 43% for the control-group patients. The survival rate of the case group was better than that of the control group (not significant; P = 0.114). The same trend was seen in the patients with stage III or N+ NSCLC (not significant; P = 0.114, P = 0.168). There were no life-threatening adverse events.

Conclusions

BCG-CWS immunotherapy seemed to improve survival after resection of NSCLC, especially locally advanced NSCLC. Moreover, this immunotherapy did not compromise quality of life during treatment.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Similar content being viewed by others

References

  1. Berinstein NL. Biological therapy of cancer. In: Tannock IF, Hill RP, Bristow RG, Harrington L, editors. Basic science of oncology. New York: McGraw-Hill; 2005. p. 505–539.

    Google Scholar 

  2. Iwasaki A, Medzhitov R. Toll-like receptor control of the adaptive immune responses. Nat Immunol 2004;5:987–995.

    Article  PubMed  CAS  Google Scholar 

  3. Boon T, Cerottini JC, Van den Eynde B, van der Bruggen P, Van Pel A. Tumor antigens recognized by T lymphocytes. Annu Rev Immunol 1994;12:337–365.

    Article  PubMed  CAS  Google Scholar 

  4. Rosenberg SA, Yang JC, Restifo NP. Cancer immunotherapy: moving beyond current vaccines. Nat Med 2004;10:909–915.

    Article  PubMed  CAS  Google Scholar 

  5. Seya T, Akazawa T, Uehori J, Matsumoto M, Azuma I, Toyoshima K. Role of Toll-like receptors and their adaptors in adjuvant immunotherapy for cancer. Anticancer Res 2003;23: 4369–4376.

    PubMed  CAS  Google Scholar 

  6. Kanzler H, Barrat FJ, Hessel EM, Coffman RL. Therapeutic targeting of innate immunity with Toll-like receptor agonists and antagonists. Nat Med 2007;13:552–559.

    Article  PubMed  CAS  Google Scholar 

  7. Parkinson T. The future of Toll-like receptor therapeutics. Curr Opin Mol Ther 2008;10:21–31.

    PubMed  CAS  Google Scholar 

  8. Tsuji S, Matsumoto M, Takeuchi O, Akira S, Azuma I, Hayashi A, et al. Maturation of human dendritic cells by cell wall skeleton of Mycobacterium bovis bacillus Calmette-Guérin: involvement of Toll-like receptors. Infect Immun 2000;68:6883–6890.

    Article  PubMed  CAS  Google Scholar 

  9. Akazawa T, Masuda H, Saeki Y, Matsumoto M, Takeda K, Tsujimura K, et al. Adjuvant-mediated tumor regression and tumor-specific cytotoxic response are impaired in MyD88-deficient mice. Cancer Res 2004;64:757–764.

    Article  PubMed  CAS  Google Scholar 

  10. Hayashi A, Noda A. Does the cell wall skeleton from Bacille Calmette-Guérin directly induce interferon-gamma, independent of interleukin-12? Jpn J Clin Oncol 1996;26:124–127.

    PubMed  CAS  Google Scholar 

  11. Uehori J, Matsumoto M, Tsuji S, Akazawa T, Takeuchi O, Akira S, et al. Simultaneous blocking of human Toll-like receptors 2 and 4 suppresses myeloid dendritic cell activation induced by Mycobacterium bovis bacillus Calmette-Guérin peptidoglycan. Infect Immun 2003;71:4238–4249.

    Article  PubMed  CAS  Google Scholar 

  12. Hayashi A, Doi O, Azuma I, Toyoshima K. Immuno-friendly use of BCG-cell-wall skeleton remarkably improves the survival rate of various cancer patients. Proc Japan Acad 1998;74:50–55.

    Article  Google Scholar 

  13. Azuma I, Kishimoto S, Yamamura Y, Petit JF. Adjuvancity of mycobacterial cell wall. Jpn J Microbiol 1971;15:193–197.

    PubMed  CAS  Google Scholar 

  14. Hayashi A, Nakamura H, Sugihara T, Azuma I. BCG-cell wall skeleton completely cures the immunologically eligible acute leukemia patients. Proc Japan Acad 1999;75:295–300.

    Article  Google Scholar 

  15. Ochiai T, Sato H, Hayashi R, Asano T, Sato H, Yamamura Y. Postoperative adjuvant immunotherapy of gastric cancer with BCG-CWS wall skeleton. 3- to 6-year follow-up of a randomized clinical trial. Cancer Immunol Immunother 1983;14:167–171.

    Article  PubMed  CAS  Google Scholar 

  16. Non-Small Cell Lung Cancer Collaborate Group. Chemotherapy in non-small cell lung cancer: a meta-analysis using updated data on individual patients from 52 randomized clinical trials. BMJ 1995;311:899–909.

    Google Scholar 

  17. Kaplan EL, Meier P. Nonparametric estimation from incomplete observation. J Am Sat Assoc 1958;53:457–481.

    Article  Google Scholar 

  18. Hayashi A. Interferon-γ as a marker for the effective cancer immunotherapy with BCG-cell wall skeleton. Proc Japan Acad 1994;70:205–209.

    Article  CAS  Google Scholar 

  19. Boon T, Cerottini J-C, Van Der Bruggen P, Van Pel A. Tumor antigens recognized by T lymphocytes. Annu Rev Immunol 1994;12:337–365.

    Article  PubMed  CAS  Google Scholar 

  20. Barao I, Ascensao JL. Human natural killer cells. Arch Immunol Ther Exp 1998;46:213–229.

    CAS  Google Scholar 

  21. Mason KA, Ariga H, Neal R, Valdecanas D, Hunter N, Krieg AM, et al. Targeting Toll-like receptor 9 with CpG oligodeoxynucleotides enhances tumor response to fractionated radiotherapy. Clin Cancer Res 2005;11:361–369.

    PubMed  CAS  Google Scholar 

  22. Koski GK, Czerniecki BJ. Combining innate immunity with radiation therapy for cancer treatment. Clin Cancer Res 2005;11: 7–11.

    PubMed  CAS  Google Scholar 

  23. Lipford GB, Sparwasser T, Zimmermann S, Heeg K, Wagner H. CpG-DNA-mediated transient lymphadenopathy is associated with a state of Th1 predisposition to antigen-driven responses. J Immunol 2000;165:1228–1235.

    PubMed  CAS  Google Scholar 

  24. Matsumoto M, Seya T, Kikkawa S, Tsuji S, Shida K, Nomura M, et al. Interferon gamma-producing ability in blood lymphocytes of patients with lung cancer through activation of the innate immune system by BCG cell wall skeleton. Int Immunol 2001;1: 1559–1569.

    Article  CAS  Google Scholar 

  25. Paul WE, Seder RA. Lymphocyte responses and cytokines. Cell 1994;76:241–251.

    Article  PubMed  CAS  Google Scholar 

  26. Trojan A, Urosevic M, Dummer R, Giger R, Weder W, Stahel RA. Immune activation status of CD8+ T cells infi ltrating non-small cell lung cancer. Lung Cancer 2004;44:143–147.

    Article  PubMed  Google Scholar 

  27. Tanaka F. UFT (tegafur and uracil) as postoperative adjuvant chemotherapy for solid tumors (carcinoma of the lung, stomach, colon/rectum, and breast): clinical evidence, mechanism of action, and future direction. Surg Today 2007;37:923–943.

    Article  PubMed  CAS  Google Scholar 

  28. Yasumoto K, Manabe H, Yanagawa E, Nagano N, Ueda H, Hirota N, et al. Nonspecific adjuvant immunotherapy of lung cancer with cell wall skeleton of Mycobacterium bovis Bacillus Calmette-Guérin. Cancer Res 1979;39:3262–3267.

    PubMed  CAS  Google Scholar 

  29. Cull KM, Glaser T, Ito CY, Buckler AJ, Pelletier J, Halber DA, et al. Isolation and characterization of a zinc finger polypeptide gene at the human chromosome 11 Wilms’ tumor locus. Cell 1990;60:509–520.

    Article  Google Scholar 

  30. Morita S, Oka Y, Tsuboi A, Kawakami M, Maruno M, Izumoto S, et al. A phase I/II trial of a WT1 (Wilms’ tumor gene) peptide vaccine in patients with solid malignancy: safety assessment based on the phase I data. Jpn J Clin Oncol 2006;36:231–236.

    Article  PubMed  Google Scholar 

  31. Nakajima H, Kawasaki K, Oka Y, Tsuboi A, Kawakami M, Ikegame K, et al. WT1 peptide vaccination combined with BCGCWS is more efficient for tumor eradication than WT1 peptide vaccination alone. Cancer Immunol Immunother 2004;53:617–624.

    Article  PubMed  CAS  Google Scholar 

  32. Vermorken JB, Claessen MEC, Van Tinteren H, Gall HE, Ezinga R, Meijer S, et al. Active specific immunotherapy for stage II and stage III human colon cancer: a randomized trial. Lancet 1999;353: 345–350.

    Article  PubMed  CAS  Google Scholar 

  33. Mocellin S, Mandruzzato S, Bronte V, Lise M, Nitti D. Vaccines for solid tumours. Lancet Oncol 2004;5:681–689.

    Article  PubMed  CAS  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Rights and permissions

Reprints and permissions

About this article

Cite this article

Kodama, K., Higashiyama, M., Takami, K. et al. Innate immune therapy with a Bacillus Calmette-Guérin cell wall skeleton after radical surgery for non-small cell lung cancer: A case-control study. Surg Today 39, 194–200 (2009). https://doi.org/10.1007/s00595-008-3826-3

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s00595-008-3826-3

Key words

Navigation