Skip to main content

Advertisement

Log in

The association of islet autoantibodies with the neural retinal thickness and microcirculation in type 1 diabetes mellitus with no clinical evidence of diabetic retinopathy

  • Original Article
  • Published:
Acta Diabetologica Aims and scope Submit manuscript

Abstract

Objective

To examine the association between islet autoantibodies (IAbs) and the retinal neurovascular changes in type 1 diabetes mellitus (T1DM) with no diabetic retinopathy (NDR).

Methods

This cross-sectional study measured the neural retinal structure and microvascular density of 118 NDR eyes using spectral-domain optical coherence tomography angiography. Retinal structure parameters included retinal thickness (RT), inner retinal thickness (iRT), retina never fibral layer thickness (RNFL thickness), ganglion cell complex thickness (GCC thickness), and loss volume of GCC. Microvascular parameters included vessel density of superficial capillary plexus (sVD), vessel density of deep capillary plexus, and vessel density of choroid capillary plexus. Comparison and correlation analyses of these OCTA parameters were made with various IAbs, including glutamic acid decarboxylase antibody (GADA), tyrosine phosphatase-related islet antigen 2 antibody (IA2A), and zinc transporter 8 antibody (ZnT8A). A general linear model was used to understand the association of IAbs with the retina parameters.

Results

The IAb positive (IAbs +) group, which included 85 patients, had thinner RT (235.20 ± 18.10 mm vs. 244.40 ± 19.90 mm at fovea, P = 0.021) and thinner iRT (120.10 ± 9.00 mm vs. 124.70 ± 6.90 mm at parafovea, P = 0.015), compared with the IAb negative (IAbs-) group comprising 33 patients. Furthermore, a more severe reduction of RT was demonstrated in the presence of multiple IAbs. Among the three IAbs, GADA was the most significant independent risk factor of all-round RT decrease (β = −0.20 vs. −0.27 at fovea and parafovea, respectively, P < 0.05), while titers of IA2A negatively affect sVD in the parafovea (β = −0.316, P = 0.003).

Conclusions

IAbs are associated with neural retinal thinning and microcirculation reduction in T1DM patients before the clinical onset of diabetic retinopathy.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2

Similar content being viewed by others

Abbreviations

T1DM:

Type 1 diabetes mellitus

T2DM:

Type 2 diabetes mellitus

IAbs:

Islet autoantibodies

ICA:

Islet cell antibody

GADA:

Glutamic acid decarboxylase antibody

IA2A:

Tyrosine phosphatase-related islet antigen 2 antibody

ZnT8A:

Zinc transporter 8 antibody

DR:

Diabetic retinopathy

NDR:

No clinical evidence of DR

BCVA:

Best-corrected visual acuity

SD-OCTA:

Spectral-domain optical coherence tomography angiography

VD:

Vascular density

ILM:

Inner limiting membrane

IPL:

Inner plexiform layer

RPE:

Retinal pigment epithelium

sVD:

Vessel density of superficial capillary plexus

dVD:

Vessel density of deep capillary plexus

cVD:

Vessel density of choroid capillary plexus

RT:

Retinal thickness

iRT:

Inner retinal thickness

RNFL:

Retina never fibral layer

GCC:

Ganglion cell complex

FLV:

Focal loss volume

GLV:

Global loss volume

References

  1. Dayan CM, Besser R, Oram RA, Hagopian W, Vatish M, Bendor-Samuel O, Snape MD, Todd JA (2021) Preventing type 1 diabetes in childhood. Science 373(6554):506–510. https://doi.org/10.1126/science.abi4742

    Article  CAS  PubMed  Google Scholar 

  2. (2021) 2. Classification and Diagnosis of Diabetes: Standards of Medical Care in Diabetes-2021. Diabetes Care 44(Suppl 1):S15–S33 https://doi.org/10.2337/dc21-S002

  3. Ziegler AG, Rewers M, Simell O, Simell T, Lempainen J, Steck A, Winkler C, Ilonen J, Veijola R, Knip M, Bonifacio E, Eisenbarth GS (2013) Seroconversion to multiple islet autoantibodies and risk of progression to diabetes in children. JAMA 309(23):2473–2479. https://doi.org/10.1001/jama.2013.6285

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  4. Maddaloni E, Coleman RL, Agbaje O, Buzzetti R, Holman RR (2020) Time-varying risk of microvascular complications in latent autoimmune diabetes of adulthood compared with type 2 diabetes in adults: a post-hoc analysis of the UK Prospective Diabetes Study 30-year follow-up data (UKPDS 86). Lancet Diabetes Endocrinol 8(3):206–215. https://doi.org/10.1016/S2213-8587(20)30003-6

    Article  CAS  PubMed  Google Scholar 

  5. Fong DS, Aiello L, Gardner TW, King GL, Blankenship G, Cavallerano JD, Ferris FR, Klein R (2004) Retinopathy in diabetes. Diabetes Care 27(Suppl 1):S84–S87. https://doi.org/10.2337/diacare.27.2007.s84

    Article  PubMed  Google Scholar 

  6. Attawia MA, Nayak RC (1999) Circulating antipericyte autoantibodies in diabetic retinopathy. Retina 19(5):390–400. https://doi.org/10.1097/00006982-199909000-00004

    Article  CAS  PubMed  Google Scholar 

  7. Sinha S, Saxena S, Das S, Prasad S, Bhasker SK, Mahdi AA, Kruzliak P (2016) Antimyeloperoxidase antibody is a biomarker for progression of diabetic retinopathy. J Diabetes Complications 30(4):700–704. https://doi.org/10.1016/j.jdiacomp.2016.01.010

    Article  PubMed  Google Scholar 

  8. Wangel AG, Kontiainen S, Scheinin T, Schlenzka A, Wangel D, Maenpaa J (1992) Anti-endothelial cell antibodies in insulin-dependent diabetes mellitus. Clin Exp Immunol 88(3):410–413. https://doi.org/10.1111/j.1365-2249.1992.tb06463.x

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  9. Yoshitake S, Murakami T, Suzuma K, Yoshitake T, Uji A, Morooka S, Dodo Y, Fujimoto M, Shan Y, Fort PE, Ito S, Tsujikawa A, Yoshimura N (2019) Anti-fumarase antibody promotes the dropout of photoreceptor inner and outer segments in diabetic macular oedema. Diabetologia 62(3):504–516. https://doi.org/10.1007/s00125-018-4773-1

    Article  CAS  PubMed  Google Scholar 

  10. Roll U, Nuber A, Schroder A, Gerlach E, Janka HU, Ziegler AG (1995) No association of antibodies to glutamic acid decarboxylase and diabetic complications in patients with IDDM. Diabetes Care 18(2):210–215. https://doi.org/10.2337/diacare.18.2.210

    Article  CAS  PubMed  Google Scholar 

  11. Hermitte L, Atlan-Gepner C, Mattei C, Dufayet D, Jannot MF, Christofilis MA, Nervi S, Vialettes B (1998) Diverging evolution of anti-GAD and anti-IA-2 antibodies in long-standing diabetes mellitus as a function of age at onset: no association with complications. Diabet Med 15(7):586–591. https://doi.org/10.1002/(SICI)1096-9136(199807)15:7%3c586::AID-DIA624%3e3.0.CO;2-B

    Article  CAS  PubMed  Google Scholar 

  12. Arslan D, Merdin A, Tural D, Temizel M, Akin O, Gunduz S, Tatli AM, Avci F, Uysal M (2014) The effect of autoimmunity on the development time of microvascular complications in patients with type 1 diabetes mellitus. Med Sci Monit 20:1176–1179 https://doi.org/10.12659/MSM.890742

  13. Verkauskiene R, Danyte E, Dobrovolskiene R, Stankute I, Simoniene D, Razanskaite-Virbickiene D, Seibokaite A, Urbonaite B, Jurgeviciene N, Vitkauskiene A, Schwitzgebel V, Marciulionyte D (2016) The course of diabetes in children, adolescents and young adults: does the autoimmunity status matter? BMC Endocr Disord 16(1):61. https://doi.org/10.1186/s12902-016-0145-3

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  14. Jensen RA, Agardh E, Lernmark A, Gudbjornsdottir S, Smith NL, Siscovick DS, Torn C (2011) HLA genes, islet autoantibodies and residual C-peptide at the clinical onset of type 1 diabetes mellitus and the risk of retinopathy 15 years later. PLoS ONE 6(3):e17569. https://doi.org/10.1371/journal.pone.0017569

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  15. Simo R, Hernandez C (2014) Neurodegeneration in the diabetic eye: new insights and therapeutic perspectives. Trends Endocrinol Metab 25(1):23–33. https://doi.org/10.1016/j.tem.2013.09.005

    Article  CAS  PubMed  Google Scholar 

  16. Simo R, Stitt AW, Gardner TW (2018) Neurodegeneration in diabetic retinopathy: does it really matter? Diabetologia 61(9):1902–1912. https://doi.org/10.1007/s00125-018-4692-1

    Article  PubMed  PubMed Central  Google Scholar 

  17. Simo R, Simo-Servat O, Bogdanov P, Hernandez C (2022) Diabetic retinopathy: role of neurodegeneration and therapeutic perspectives. Asia Pac J Ophthalmol (Phila) 11(2):160–167. https://doi.org/10.1097/APO.0000000000000510

    Article  CAS  PubMed  Google Scholar 

  18. (1991) Grading diabetic retinopathy from stereoscopic color fundus photographs--an extension of the modified Airlie House classification. ETDRS report number 10. Early treatment diabetic retinopathy study research group. Ophthalmology 98(5 Suppl):786–806

  19. Huang G, Yin M, Xiang Y, Li X, Shen W, Luo S, Lin J, Xie Z, Zheng P, Zhou Z (2016) Persistence of glutamic acid decarboxylase antibody (GADA) is associated with clinical characteristics of latent autoimmune diabetes in adults: a prospective study with 3-year follow-up. Diabetes Metab Res Rev 32(6):615–622. https://doi.org/10.1002/dmrr.2779

    Article  CAS  PubMed  Google Scholar 

  20. Xiang Y, Huang G, Zhu Y, Zuo X, Liu X, Feng Q, Li X, Yang T, Lu J, Shan Z, Liu J, Tian H, Ji Q, Zhu D, Ge J, Lin L, Chen L, Guo X, Zhao Z, Li Q, Weng J, Jia W, Liu Z, Ji L, Yang W, Leslie RD, Zhou Z (2019) Identification of autoimmune type 1 diabetes and multiple organ-specific autoantibodies in adult-onset non-insulin-requiring diabetes in China: a population-based multicentre nationwide survey. Diabetes Obes Metab 21(4):893–902. https://doi.org/10.1111/dom.13595

    Article  CAS  PubMed  Google Scholar 

  21. Siegfried F, Rommel F, Rothe M, Brinkmann MP, Sochurek J, Freitag J, Grisanti S, Ranjbar M (2019) Evaluating diurnal changes in choroidal sublayer perfusion using optical coherence tomography angiography. Acta Ophthalmol 97(8):e1062–e1068. https://doi.org/10.1111/aos.14140

    Article  PubMed  Google Scholar 

  22. Katsarou A, Gudbjornsdottir S, Rawshani A, Dabelea D, Bonifacio E, Anderson BJ, Jacobsen LM, Schatz DA, Lernmark A (2017) Type 1 diabetes mellitus. Nat Rev Dis Primers 3:17016. https://doi.org/10.1038/nrdp.2017.16

    Article  PubMed  Google Scholar 

  23. Zhao Q, Ding L, Yang Y, Sun J, Wang M, Li X, Liu M (2022) Clinical Characteristics of patients with HNF1-alpha MODY: a literature review and retrospective chart review. Front Endocrinol (Lausanne) 13:900489. https://doi.org/10.3389/fendo.2022.900489

    Article  PubMed  Google Scholar 

  24. Agardh D, Agardh E, Landin-Olsson M, Gaur LK, Agardh CD, Lernmark A (1998) Inverse relationship between GAD65 antibody levels and severe retinopathy in younger type 1 diabetic patients. Diabetes Res Clin Pract 40(1):9–14. https://doi.org/10.1016/s0168-8227(98)00007-2

    Article  CAS  PubMed  Google Scholar 

  25. Ko GT, Cockram CS, Critchley JA, Lau MS, Chan JC (2000) No relationship between antibodies to GAD and microangiopathic complications in young Chinese diabetic patients. Diabetes Care 23(7):1045–1046. https://doi.org/10.2337/diacare.23.7.1045

    Article  CAS  PubMed  Google Scholar 

  26. So M, Speake C, Steck AK, Lundgren M, Colman PG, Palmer JP, Herold KC, Greenbaum CJ (2021) Advances in type 1 diabetes prediction using islet autoantibodies: beyond a simple count. Endocr Rev 42(5):584–604. https://doi.org/10.1210/endrev/bnab013

    Article  PubMed  Google Scholar 

  27. Gildea D (2019) The diagnostic value of optical coherence tomography angiography in diabetic retinopathy: a systematic review. Int Ophthalmol 39(10):2413–2433. https://doi.org/10.1007/s10792-018-1034-8

    Article  PubMed  Google Scholar 

  28. Sachdeva MM (2021) Retinal neurodegeneration in diabetes: an emerging concept in diabetic retinopathy. Curr Diab Rep 21(12):65. https://doi.org/10.1007/s11892-021-01428-x

    Article  PubMed  PubMed Central  Google Scholar 

  29. Orduna-Hospital E, Sanchez-Cano A, Perdices L, Acha J, Lopez-Alaminos EM, Pinilla I (2021) Changes in retinal layers in type 1 diabetes mellitus without retinopathy measured by spectral domain and swept source OCTs. Sci Rep 11(1):10427. https://doi.org/10.1038/s41598-021-89992-w

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  30. Da SM, Do CCA, Gobbato GC, Dos RM, Lavinsky F, Schaan BD, Lavinsky D (2021) Early neurovascular retinal changes detected by swept-source OCT in type 2 diabetes and association with diabetic kidney disease. Int J Retina Vitreous 7(1):73. https://doi.org/10.1186/s40942-021-00347-z

    Article  Google Scholar 

  31. Bilen A, Ates O, Ondas O, Bilen H, Capoglu I (2022) Retinal Nerve Fiber Layer Thickness in Prediabetic Patients. Eurasian J Med 54(1):8–11. https://doi.org/10.5152/eurasianjmed.2022.20420

    Article  PubMed  PubMed Central  Google Scholar 

  32. Forrester JV, Kuffova L, Delibegovic M (2020) the role of inflammation in diabetic retinopathy. Front Immunol 11:583687. https://doi.org/10.3389/fimmu.2020.583687

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  33. Dade M, Berzero G, Izquierdo C, Giry M, Benazra M, Delattre JY, Psimaras D, Alentorn A (2020) Neurological syndromes associated with Anti-GAD antibodies. Int J Mol Sci 21(10). https://doi.org/10.3390/ijms21103701

  34. Sarthy PV, Fu M (1989) Localization of L-glutamic acid decarboxylase mRNA in monkey and human retina by in situ hybridization. J Comp Neurol 288(4):691–697. https://doi.org/10.1002/cne.902880413

    Article  CAS  PubMed  Google Scholar 

  35. Eggers ED, Carreon TA (2020) The effects of early diabetes on inner retinal neurons. Vis Neurosci 37:E6. https://doi.org/10.1017/S095252382000005X

    Article  Google Scholar 

  36. Gerber PA, Bellomo EA, Hodson DJ, Meur G, Solomou A, Mitchell RK, Hollinshead M, Chimienti F, Bosco D, Hughes SJ, Johnson PR, Rutter GA (2014) Hypoxia lowers SLC30A8/ZnT8 expression and free cytosolic Zn2+ in pancreatic beta cells. Diabetologia 57(8):1635–1644. https://doi.org/10.1007/s00125-014-3266-0

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  37. Dascalu AM, Anghelache A, Stana D, Costea AC, Nicolae VA, Tanasescu D, Costea DO, Tribus LC, Zgura A, Serban D, Duta L, Tudosie M, Balasescu SA, Tanasescu C, Tudosie MS (2022) Serum levels of copper and zinc in diabetic retinopathy: Potential new therapeutic targets (Review). Exp Ther Med 23(5):324. https://doi.org/10.3892/etm.2022.11253

    Article  CAS  PubMed  PubMed Central  Google Scholar 

Download references

Acknowledgments

We thank Weihe Zhou (National Clinical Research Center for Ocular Diseases, Wenzhou, China) for their help and support with statistical analysis.

Funding

Our work was supported by the National Natural Science Foundation of China (No. 81072221), Projects of Research and Development in Key Areas of Hunan Province (No. 2017SK2020), and the Natural Science Foundation of Hunan Province (No. 2023JJ70017).

Author information

Authors and Affiliations

Authors

Contributions

TW and TZ did the experiments and acquired, analyzed, and interpreted the data, and drafted and critically revised the manuscript. ND, YT, LL, YZ, PZ, QL, RW, and RW contributed to the fundus examination and collected the clinical data. YX and XL helped to organize the systemic examination for the DM coherent. ML critically revised the manuscript for important intellectual content. LG and RW contributed substantially to the conception and design, acquisition of data, or analysis and interpretation of data, and critically revised the manuscript for important intellectual content. All authors approved the final version of the manuscript. LG and RW were responsible for the integrity of the work as a whole.

Corresponding authors

Correspondence to Ronghan Wu or Ling Gao.

Ethics declarations

Conflict of interest

The authors declare they have no financial interests.

Ethical Approval

We confirm that all our procedures involving human participants were conducted in accordance with the ethical standards of the institutional research committee and with the 1964 Helsinki declaration and its later amendments or comparable ethical standards.

Informed Consent

Informed consent was obtained from all individual participants included in the study.

Additional information

Communicated by Massimo Federici.

Publisher's Note

Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Supplementary Information

Rights and permissions

Springer Nature or its licensor (e.g. a society or other partner) holds exclusive rights to this article under a publishing agreement with the author(s) or other rightsholder(s); author self-archiving of the accepted manuscript version of this article is solely governed by the terms of such publishing agreement and applicable law.

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Wang, T., Zhang, T., Dong, N. et al. The association of islet autoantibodies with the neural retinal thickness and microcirculation in type 1 diabetes mellitus with no clinical evidence of diabetic retinopathy. Acta Diabetol (2024). https://doi.org/10.1007/s00592-024-02255-8

Download citation

  • Received:

  • Accepted:

  • Published:

  • DOI: https://doi.org/10.1007/s00592-024-02255-8

Keywords

Navigation