Skip to main content
Log in

Altered expression of long noncoding RNA MEG3 in the offspring of gestational diabetes mellitus induces impaired glucose tolerance in adulthood

  • Original Article
  • Published:
Acta Diabetologica Aims and scope Submit manuscript

Abstract

Aim

Gestational diabetes mellitus (GDM) affects a significant number of women worldwide and has been associated with lifelong health consequences for their offspring, including increased susceptibility to obesity, insulin resistance, and type II diabetes. Recent studies have suggested that aberrant expression of the long non-coding RNA Meg3 in the liver may contribute to impaired glucose metabolism in individuals. In this study, we aimed to investigate whether intrauterine exposure to hyperglycemia affects glucose intolerance in puberty by mediating the overexpression of LncMeg3 in the liver.

Methods

To test our hypothesis, we established an animal model of intrauterine hyperglycemia to mimic GDM. The progeny was observed for phenotypic changes, and intraperitoneal glucose tolerance tests, insulin tolerance tests, and pyruvate tolerance tests were conducted to assess glucose and insulin tolerance. We also measured LncMeg3 expression in the liver using real-time quantitative PCR and examined differential methylation areas (DMRs) in the Meg3 gene using pyrophosphoric sequencing. To investigate the role of LncMeg3 in glucose tolerance, we conducted Meg3 intervention by vein tail and analyzed the changes in the phenotype and transcriptome of the progeny using bioinformatics analysis.

Results

We found that intrauterine exposure to hyperglycemia led to impaired glucose and insulin tolerance in the progeny, with a tendency toward increased fasting blood glucose in fat offspring at 16 weeks (P = 0.0004). LncMeg3 expression was significantly upregulated (P = 0.0061), DNMT3B expression downregulated (P = 0.0226), and DNMT3A (P = 0.0026), TET2 (P = 0.0180) expression upregulated in the liver. Pyrophosphoric sequencing showed hypomethylation in Meg3-DMRs (P = 0.0005). Meg3 intervention by vein tail led to a decrease in the percentage of obese and emaciated offspring (emaciation: 44% vs. 23%; obesity: 25% vs. 15%) and attenuated glucose intolerance. Bioinformatics analysis revealed significant differences in the transcriptome of the progeny, particularly in circadian rhythm and PPAR signaling pathways.

Conclusion

In conclusion, our study suggests that hypomethylation of Meg3-DMRs increases the expression of the imprinted gene Meg3 in the liver of males, which is associated with impaired glucose tolerance in GDM-F1. MEG3 interference may attenuate glucose intolerance, which may be related to transcriptional changes. Our findings provide new insights into the mechanisms underlying the long-term effects of intrauterine hyperglycemia on progeny health and highlight the potential of Meg3 as an intervention target for glucose intolerance.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5

Similar content being viewed by others

Data availability statement

The original contributions presented in the study are included in the article/supplementary material. Further inquiries can be directed to the corresponding author.

References

  1. Metzger BE, Gabbe SG, Persson B et al (2010) International association of diabetes and pregnancy study groups recommendations on the diagnosis and classification of hyperglycemia in pregnancy. Diabetes Care 33(3):676–682. https://doi.org/10.2337/dc09-1848

    Article  CAS  PubMed  Google Scholar 

  2. IDF Diabetes Atlas 10th edition 2021. https://diabetesatlas.org/atlas/tenth-edition/

  3. Coustan DR (2013) Gestational diabetes mellitus. Clin Chem 59(9):1310–1321. https://doi.org/10.1373/clinchem.2013.203331

    Article  CAS  PubMed  Google Scholar 

  4. Zhu H, Chen B, Cheng Y et al (2019) Insulin therapy for gestational diabetes mellitus does not fully protect offspring from diet-induced metabolic disorders. Diabetes 68(4):696–708. https://doi.org/10.2337/db18-1151

    Article  CAS  PubMed  Google Scholar 

  5. Farrar D, Ma S, Bryant M et al (2016) Hyperglycaemia and risk of adverse perinatal outcomes: systematic review and meta-analysis. BMJ (Clin Res ed.) 354:i4694. https://doi.org/10.1136/bmj.i4694

    Article  Google Scholar 

  6. Ye W, Luo C, Huang J et al (2022) Gestational diabetes mellitus and adverse pregnancy outcomes: systematic review and meta-analysis. BMJ (Clin Res ed.) 377:e067946. https://doi.org/10.1136/bmj-2021-067946

    Article  Google Scholar 

  7. Dabelea D, Hanson RL, Lindsay RS et al (2000) Intrauterine exposure to diabetes conveys risks for type 2 diabetes and obesity: a study of discordant sibships. Diabetes 49(12):2208–2211. https://doi.org/10.2337/diabetes.49.12.2208

    Article  CAS  PubMed  Google Scholar 

  8. Dabelea D (2007) The predisposition to obesity and diabetes in offspring of diabetic mothers. Diabetes Care 30(Suppl 2):S169-174. https://doi.org/10.2337/dc07-s211

    Article  PubMed  Google Scholar 

  9. Whitaker RC, Pepe MS, Seidel KD et al (1998) Gestational diabetes and the risk of offspring obesity. Pediatrics 101(2):E9. https://doi.org/10.1542/peds.101.2.e9

    Article  CAS  PubMed  Google Scholar 

  10. Silverman BL, Metzger BE, Cho NH et al (1995) Impaired glucose tolerance in adolescent offspring of diabetic mothers. Relationship to fetal hyperinsulinism. Diabetes Care 18(5):611–617. https://doi.org/10.2337/diacare.18.5.611

    Article  CAS  PubMed  Google Scholar 

  11. Damm P, Houshmand-Oeregaard A, Kelstrup L et al (2016) Gestational diabetes mellitus and long-term consequences for mother and offspring: a view from Denmark. Diabetologia 59(7):1396–1399. https://doi.org/10.1007/s00125-016-3985-5

    Article  CAS  PubMed  Google Scholar 

  12. Manderson JG, Mullan B, Patterson CC et al (2022) Cardiovascular and metabolic abnormalities in the offspring of diabetic pregnancy. Diabetologia 45(7):991–996. https://doi.org/10.1007/s00125-002-0865-y

    Article  CAS  Google Scholar 

  13. Sobngwi E, Boudou P, Mauvais-Jarvis F et al (2003) Effect of a diabetic environment in utero on predisposition to type 2 diabetes. Lancet 361(9372):1861–1865. https://doi.org/10.1016/S0140-6736(03)13505-2

    Article  PubMed  Google Scholar 

  14. Aceti A, Santhakumaran S, Logan KM et al (2012) The diabetic pregnancy and offspring blood pressure in childhood: a systematic review and meta-analysis. Diabetologia 55(11):3114–3127. https://doi.org/10.1007/s00125-012-2689-8

    Article  CAS  PubMed  Google Scholar 

  15. Miranda JO, Cerqueira RJ, Barros H et al (2019) Maternal diabetes mellitus as a risk factor for high blood pressure in late childhood. Hypertension 73(1):e1–e7. https://doi.org/10.1161/HYPERTENSIONAHA.118.11761

    Article  CAS  PubMed  Google Scholar 

  16. Florian K, Mendell Joshua T (2018) Functional classification and experimental dissection of long noncoding RNAs. Cell 172(3):393–407. https://doi.org/10.1016/j.cell.2018.01.011

    Article  CAS  Google Scholar 

  17. Lu Q, Guo P, Liu A et al (2021) The role of long noncoding RNA in lipid, cholesterol, and glucose metabolism and treatment of obesity syndrome. Med Res Rev 41(3):1751–1774. https://doi.org/10.1002/med.21775

    Article  CAS  PubMed  Google Scholar 

  18. Tello-Flores VA, Beltrán-Anaya FO, Ramírez-Vargas MA et al (2021) Role of long non-coding RNAs and the molecular mechanisms involved in insulin resistance. Int J Mol Sci. https://doi.org/10.3390/ijms22147256

    Article  PubMed  PubMed Central  Google Scholar 

  19. Wi Y, Lyu Y, Xiang R et al (2022) Long noncoding RNAs in the pathogenesis of insulin resistance. Int J Mol Sci. https://doi.org/10.3390/ijms232416054

    Article  Google Scholar 

  20. Zhang TN, Wang W, Yang N et al (2020) Regulation of glucose and lipid metabolism by long non-coding RNAs: facts and research progress. Front Endocrinol 11:457. https://doi.org/10.3389/fendo.2020.00457

    Article  CAS  Google Scholar 

  21. Kameswaran V, Bramswig NC, McKenna LB et al (2014) Epigenetic regulation of the DLK1-MEG3 microRNA cluster in human type 2 diabetic islets. Cell Metab 19(1):135–145. https://doi.org/10.1016/j.cmet.2013.11.016

    Article  CAS  PubMed  Google Scholar 

  22. Lin SP, Coan P, da Rocha ST et al (2007) Differential regulation of imprinting in the murine embryo and placenta by the Dlk1-Dio3 imprinting control region. Development 134(2):417–426. https://doi.org/10.1242/dev.02726

    Article  CAS  PubMed  Google Scholar 

  23. López-Noriega L, Rutter GA (2020) Long non-coding RNAs as key modulators of pancreatic β-cell mass and function. Front Endocrinol 11:610213. https://doi.org/10.3389/fendo.2020.610213

    Article  Google Scholar 

  24. You L, Wang N, Yin D et al (2016) Downregulation of long noncoding RNA Meg3 affects insulin synthesis and secretion in mouse pancreatic beta cells. J Cell Physiol 231(4):852–862. https://doi.org/10.1002/jcp.25175

    Article  CAS  PubMed  Google Scholar 

  25. Zhu X, Wu YB, Zhou J et al (2016) Upregulation of lncRNA MEG3 promotes hepatic insulin resistance via increasing FoxO1 expression. Biochem Biophys Res Commun 469(2):319–325. https://doi.org/10.1016/j.bbrc.2015.11.048

    Article  CAS  PubMed  Google Scholar 

  26. Zhu X, Li H, Wu Y et al (2019) lncRNA MEG3 promotes hepatic insulin resistance by serving as a competing endogenous RNA of miR-214 to regulate ATF4 expression. Int J Mol Med 43(1):345–357. https://doi.org/10.3892/ijmm.2018.3975

    Article  CAS  PubMed  Google Scholar 

  27. Chen DL, Shen DY, Han CK et al (2019) LncRNA MEG3 aggravates palmitate-induced insulin resistance by regulating miR-185-5p/Egr2 axis in hepatic cells. Eur Rev Med Pharmacol Sci 23(12):5456–5467. https://doi.org/10.26355/eurrev_201906_18215

    Article  PubMed  Google Scholar 

  28. Wang WJ, Huang R, Zheng T et al (2022) Genome-wide placental gene methylations in gestational diabetes mellitus, fetal growth and metabolic health biomarkers in cord blood. Front Endocrinol 13:875180. https://doi.org/10.3389/fendo.2022.875180

    Article  Google Scholar 

  29. Abu SN, Jelinek HF, Alsafar H et al (2022) Genomics and epigenomics of gestational diabetes mellitus: understanding the molecular pathways of the disease pathogenesis. Int J Mol Sci. https://doi.org/10.3390/ijms23073514

    Article  PubMed  PubMed Central  Google Scholar 

  30. Agarwal P, Morriseau TS, Kereliuk SM et al (2018) Maternal obesity, diabetes during pregnancy and epigenetic mechanisms that influence the developmental origins of cardiometabolic disease in the offspring. Crit Rev Clin Lab Sci 55(2):1–101. https://doi.org/10.1080/10408363.2017.1422109

    Article  CAS  Google Scholar 

  31. Huang W, Li H, Yu Q et al (2022) LncRNA-mediated DNA methylation: an emerging mechanism in cancer and beyond. J Exp Clin Cancer Research CR 41(1):100. https://doi.org/10.1186/s13046-022-02319-z

    Article  CAS  PubMed  Google Scholar 

  32. Chen M, Yan J, Han Q et al (2020) Identification of hub-methylated differentially expressed genes in patients with gestational diabetes mellitus by multi-omic WGCNA basing epigenome-wide and transcriptome-wide profiling. J Cell Biochem 121(5–6):3173–3184. https://doi.org/10.1002/jcb.29584

    Article  CAS  PubMed  Google Scholar 

  33. Ding GL, Wang FF, Shu J et al (2012) Transgenerational glucose intolerance with Igf2/H19 epigenetic alterations in mouse islet induced by intrauterine hyperglycemia. Diabetes 61(5):1133–1142. https://doi.org/10.2337/db11-1314

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  34. Yan H, Yang W, Zhou F et al (2019) Estrogen improves insulin sensitivity and suppresses gluconeogenesis via the transcription factor Foxo1. Diabetes 68(2):291–304. https://doi.org/10.2337/db18-0638

    Article  CAS  PubMed  Google Scholar 

  35. Moore LD, Le T, Fan G (2013) DNA methylation and its basic function. Neuropsychopharmacology 38(1):23–38. https://doi.org/10.1038/npp.2012.112

    Article  CAS  PubMed  Google Scholar 

  36. Mattei AL, Bailly N, Meissner A (2022) DNA methylation: a historical perspective. Trends Genet 38(7):676–707. https://doi.org/10.1016/j.tig.2022.03.010

    Article  CAS  PubMed  Google Scholar 

  37. Jiang Y, Yu YC, Ding GL et al (2018) Intrauterine hyperglycemia induces intergenerational Dlk1-Gtl2 methylation changes in mouse placenta. Oncotarget 9(32):22398–22405. https://doi.org/10.18632/oncotarget.23976

    Article  PubMed  PubMed Central  Google Scholar 

  38. Jiang Y, Zhu H, Chen Z et al (2022) Hepatic IGF2/H19 epigenetic alteration induced glucose intolerance in gestational diabetes mellitus offspring via FoxO1 mediation. Front Endocrinol 13:844707. https://doi.org/10.3389/fendo.2022.844707

    Article  Google Scholar 

  39. Lawlor DA, Lichtenstein P, Långström N (2011) Association of maternal diabetes mellitus in pregnancy with offspring adiposity into early adulthood: sibling study in a prospective cohort of 280,866 men from 248,293 families. Circulation 123(3):258–265. https://doi.org/10.1161/CIRCULATIONAHA.110.980169

    Article  PubMed  PubMed Central  Google Scholar 

  40. Pereira TJ, Fonseca MA, Campbell KE et al (2015) Maternal obesity characterized by gestational diabetes increases the susceptibility of rat offspring to hepatic steatosis via a disrupted liver metabolome. J Physiol Lond 593(14):3181–3197. https://doi.org/10.1113/JP270429

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  41. Gillman MW, Rifas-Shiman S, Berkey CS et al (2003) Maternal gestational diabetes, birth weight, and adolescent obesity. Pediatrics 111(3):e221-226. https://doi.org/10.1542/peds.111.3.e221

    Article  PubMed  Google Scholar 

  42. Pettitt DJ, Knowler WC (1998) Long-term effects of the intrauterine environment, birth weight, and breast-feeding in Pima Indians. Diabetes Care 21(Suppl 2):B138-141

    PubMed  Google Scholar 

  43. Domínguez-Avila JA, González-Aguilar GA, Alvarez-Parrilla E et al (2016) Modulation of PPAR expression and activity in response to polyphenolic compounds in high fat diets. Int J Mol Sci. https://doi.org/10.3390/ijms17071002

    Article  PubMed  PubMed Central  Google Scholar 

  44. Zheng J, Xiao X, Zhang Q et al (2014) Maternal high-fat diet modulates hepatic glucose, lipid homeostasis and gene expression in the PPAR pathway in the early life of offspring. Int J Mol Sci 15(9):14967–14983. https://doi.org/10.3390/ijms150914967

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  45. Mason IC, Qian J, Adler GK et al (2020) Impact of circadian disruption on glucose metabolism: implications for type 2 diabetes. Diabetologia 63(3):462–472. https://doi.org/10.1007/s00125-019-05059-6

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  46. Peng F, Li X, Xiao F et al (2022) Circadian clock, diurnal glucose metabolic rhythm, and dawn phenomenon. Trends Neurosci 45(6):471–482. https://doi.org/10.1016/j.tins.2022.03.010

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  47. Dong X, Lin D, Sheng J et al (2021) Intrauterine hyperglycemia induces liver inflammation in mouse male offspring. Int Immunopharmacol 99:107974. https://doi.org/10.1016/j.intimp.2021.107974

    Article  CAS  PubMed  Google Scholar 

Download references

Acknowledgements

The authors thank the staff at Women’s Hospital, Zhejiang University, for the technical assistance and facility support.

Funding

This work was supported by Natural Science Foundation of Zhejiang Province (LQ20H040008) and Effect of immersive distraction therapy based on virtual reality in labor pain management, Education department, Zhejiang province (Y202146854).

Author information

Authors and Affiliations

Authors

Contributions

MY, JW, and LX contributed to the collection, analysis, and interpretation of data as well as manuscript preparation. YY contributed to the data collection and analysis. YC and ML contributed to the data collection. YJ and QL contributed to the study design, data interpretation, and manuscript preparation. YJ and QL is the guarantor of this work and, as such, has full access to all the data in the study and takes responsibility for the integrity of the data and the accuracy of the data analysis. All authors listed have made a substantial, direct, and intellectual contribution to the work and approved it for publication.

Corresponding authors

Correspondence to Ying Jiang or Qiong Luo.

Ethics declarations

Conflict of interest

The authors declare that the research was conducted in the absence of any commercial or financial relationships that could be construed as a potential conflict of interest.

Ethical statement

This article does not contain any study with human participants. All procedures performed in this study involving animals were reviewed and approved by the Zhejiang University Animal Care and Use Committee (IACUC).

Informed consent

For this study, which included only animal specimens, informed consent is not required.

Additional information

This article belongs to the topical collection Pregnancy and Diabetes, managed by Antonio Secchi and Marina Scavini.

Publisher's Note

Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Supplementary Information

Rights and permissions

Springer Nature or its licensor (e.g. a society or other partner) holds exclusive rights to this article under a publishing agreement with the author(s) or other rightsholder(s); author self-archiving of the accepted manuscript version of this article is solely governed by the terms of such publishing agreement and applicable law.

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Yang, M., Wei, J., Xu, L. et al. Altered expression of long noncoding RNA MEG3 in the offspring of gestational diabetes mellitus induces impaired glucose tolerance in adulthood. Acta Diabetol 61, 79–90 (2024). https://doi.org/10.1007/s00592-023-02169-x

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s00592-023-02169-x

Keywords

Navigation