Skip to main content

Advertisement

Log in

Glucagon-like peptide-1 analog therapy in rare genetic diseases: monogenic obesity, monogenic diabetes, and spinal muscular atrophy

  • Original Article
  • Published:
Acta Diabetologica Aims and scope Submit manuscript

Abstract

Aim

Implementing genetic analyses have unraveled rare alterations causing early-onset obesity and complications, in whom treatment is challenging. We aimed to report on the effects of adjuvant off-label therapy with liraglutide, glucagon-like peptide-1 analogue (GLP-1a), in rare genetic diagnoses.

Methods

Case scenarios and review of the literature.

Results

Case 1: Nine-year-old boy with early-onset severe obesity and nonalcoholic fatty liver disease (NAFLD) due to a homozygous mutation in the MC4R gene deteriorated under lifestyle change and metformin therapy [at 10.5 years: body mass index (BMI) 51.2kg/m2, 226% of the 95th percentile, fat percentage (FP) 65% and muscle-to-fat ratio (MFR) z-score of −2.41]. One year of liraglutide treatment halted progressive weight gain [BMI 50.3kg/m2, 212% of the 95th percentile, 63.7% FP and MFR z-score of −2.34], with biochemical improvement.

Case 2: Twelve-year-old boy with obesity presented with diabetes and progressive NAFLD. Exome analysis revealed two heterozygous mutations compatible with monogenic diabetes (HNF1A) and familial hypercholesterolemia (LDLR). Lifestyle modifications resulted in clinical and laboratory improvement (BMI 87th percentile, 32.8% FP, MFR z-score of −1.63, HbA1c 5.5%) without the expected recovery in liver transaminases. Liraglutide treatment augmented the improvement in weight status (BMI 68th percentile, 22.6% FP, MFR z-score of −1.13) with normalization of liver transaminases.

Case 3: Nineteen-year-old male with spinal muscular atrophy type 3 presented with sarcopenic obesity and comorbidities. Treatment strategy included dietary counseling and multiple drug therapies (metformin, anti-hypertensive and statins). Liraglutide therapy led to a gradual recovery of metabolic complications allowing tapering-down other medications.

Conclusions

Considering the pleiotropic effects of GLP1-a beyond BMI reduction, this treatment modality may serve as a game changer in challenging cases.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1

Similar content being viewed by others

Data availability

All data are provided in the manuscript.

References

  1. Jebeile H, Kelly AS, O’Malley G, Baur LA (2022) Obesity in children and adolescents: epidemiology, causes, assessment, and management. Lancet Diabetes Endocrinol 10:351–365. https://doi.org/10.1016/S2213-8587(22)00047-X

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  2. Serra-Juhé C, Martos-Moreno G, Bou de Pieri F et al (2020) Heterozygous rare genetic variants in non-syndromic early-onset obesity. Int J Obes (Lond) 44:830–841. https://doi.org/10.1038/S41366-019-0357-5

    Article  PubMed  Google Scholar 

  3. Loos RJF, Yeo GSH (2022) The genetics of obesity: from discovery to biology. Nat Rev Genet 23:120–133. https://doi.org/10.1038/S41576-021-00414-Z

    Article  CAS  PubMed  Google Scholar 

  4. Thaker VV (2017) Genetic and epigenetic causes of obesity. Adolesc Med State Art Rev 28:379–405. https://doi.org/10.1542/9781581109405-genetic

    Article  PubMed  PubMed Central  Google Scholar 

  5. Farooqi IS (2021) Monogenic human obesity syndromes. Handb Clin Neurol 181:301–310. https://doi.org/10.1016/B978-0-12-820683-6.00022-1

    Article  PubMed  Google Scholar 

  6. Liu F, Zhu X, Jiang X et al (2022) Transcriptional control by HNF-1: emerging evidence showing its role in lipid metabolism and lipid metabolism disorders. Genes Dis 9:1248. https://doi.org/10.1016/J.GENDIS.2021.06.010

    Article  CAS  PubMed  Google Scholar 

  7. Brener A, Lebenthal Y, Shtamler A et al (2020) The endocrine manifestations of spinal muscular atrophy, a real-life observational study. Neuromuscul Disord 30:270–276. https://doi.org/10.1016/J.NMD.2020.02.011

    Article  PubMed  Google Scholar 

  8. Smith NK, Hackett TA, Galli A, Flynn CR (2019) GLP-1: molecular mechanisms and outcomes of a complex signaling system. Neurochem Int 128:94. https://doi.org/10.1016/J.NEUINT.2019.04.010

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  9. Müller TD, Finan B, Bloom SR et al (2019) Glucagon-like peptide 1 (GLP-1). Mol Metab 30:72–130. https://doi.org/10.1016/J.MOLMET.2019.09.010

    Article  PubMed  PubMed Central  Google Scholar 

  10. Spencer NJ, Hibberd TJ (2022) GLP-1 appetite control via intestinofugal neurons. Cell Res. https://doi.org/10.1038/S41422-022-00692-0

    Article  PubMed  Google Scholar 

  11. Holst JJ (2019) The incretin system in healthy humans: the role of GIP and GLP-1. Metabolism 96:46–55. https://doi.org/10.1016/J.METABOL.2019.04.014

    Article  CAS  PubMed  Google Scholar 

  12. Gasbjerg LS, Bergmann NC, Stensen S et al (2020) Evaluation of the incretin effect in humans using GIP and GLP-1 receptor antagonists. Peptides. https://doi.org/10.1016/J.PEPTIDES.2019.170183

    Article  PubMed  Google Scholar 

  13. Ma X, Liu Z, Ilyas I et al (2021) GLP-1 receptor agonists (GLP-1RAs): cardiovascular actions and therapeutic potential. Int J Biol Sci 17:2050–2068. https://doi.org/10.7150/IJBS.59965

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  14. Andrikou E, Tsioufis C, Andrikou I et al (2019) GLP-1 receptor agonists and cardiovascular outcome trials: an update. Hellenic J Cardiol 60:347–351. https://doi.org/10.1016/J.HJC.2018.11.008

    Article  PubMed  Google Scholar 

  15. Basalay MV, Mastitskaya S, Mrochek A et al (2016) Glucagon-like peptide-1 (GLP-1) mediates cardioprotection by remote ischaemic conditioning. Cardiovasc Res 112:669–676. https://doi.org/10.1093/CVR/CVW216

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  16. Talbot EA, Brown KH, Kirkland KB et al (2010) The safety of immunizing with tetanus-diphtheria-acellular pertussis vaccine (Tdap) less than 2 years following previous tetanus vaccination: experience during a mass vaccination campaign of healthcare personnel during a respiratory illness outbreak. Vaccine 28:8001–8007. https://doi.org/10.1016/j.vaccine.2010.09.034

    Article  CAS  PubMed  Google Scholar 

  17. Hira T, Pinyo J, Hara H (2020) What Is GLP-1 really doing in obesity? Trends Endocrinol Metab 31:71–80. https://doi.org/10.1016/J.TEM.2019.09.003

    Article  CAS  PubMed  Google Scholar 

  18. Gilbert MP, Pratley RE (2020) GLP-1 analogs and DPP-4 inhibitors in type 2 diabetes therapy: review of head-to-head clinical trials. Front Endocrinol (Lausanne). https://doi.org/10.3389/FENDO.2020.00178

    Article  PubMed  Google Scholar 

  19. Zhao X, Wang M, Wen Z et al (2021) GLP-1 receptor agonists: beyond their pancreatic effects. Front Endocrinol (Lausanne). https://doi.org/10.3389/FENDO.2021.721135

    Article  PubMed  PubMed Central  Google Scholar 

  20. Aroda VR (2018) A review of GLP-1 receptor agonists: evolution and advancement, through the lens of randomised controlled trials. Diabetes Obes Metab 20(Suppl 1):22–33. https://doi.org/10.1111/DOM.13162

    Article  CAS  PubMed  Google Scholar 

  21. Kelly AS, Auerbach P, Barrientos-Perez M et al (2020) A randomized, controlled trial of liraglutide for adolescents with obesity. N Engl J Med 382:2117–2128. https://doi.org/10.1056/NEJMOA1916038

    Article  CAS  PubMed  Google Scholar 

  22. Ryan PM, Seltzer S, Hayward NE et al (2021) Safety and efficacy of glucagon-like peptide-1 receptor agonists in children and adolescents with obesity: a meta-analysis. J Pediatr 236:137-147.e13. https://doi.org/10.1016/J.JPEDS.2021.05.009

    Article  CAS  PubMed  Google Scholar 

  23. FDA approves weight management drug for patients aged 12 and older | FDA. In: U.S. FOOD DRUG Adm. https://www.fda.gov/drugs/news-events-human-drugs/fda-approves-weight-management-drug-patients-aged-12-and-older. Accessed 18 Oct 2022

  24. Brener A, Peleg I, Rosenfeld T et al (2021) Beyond body mass index - body composition assessment by bioimpedance in routine endocrine practice. Endocr Pract 27:419–425. https://doi.org/10.1016/J.EPRAC.2020.10.013

    Article  PubMed  Google Scholar 

  25. McCarthy HD, Samani-Radia D, Jebb SA, Prentice AM (2014) Skeletal muscle mass reference curves for children and adolescents. Pediatr Obes 9:249–259. https://doi.org/10.1111/J.2047-6310.2013.00168.X

    Article  CAS  PubMed  Google Scholar 

  26. Matthews DR, Hosker JP, Rudenski AS et al (1985) (1985) Homeostasis model assessment: insulin resistance and β-cell function from fasting plasma glucose and insulin concentrations in man. Diabetol 287(28):412–419. https://doi.org/10.1007/BF00280883

    Article  Google Scholar 

  27. Daniels SR, Greer FR (2008) Lipid screening and cardiovascular health in childhood. Pediatrics. https://doi.org/10.1542/peds.2008-1349

    Article  PubMed  Google Scholar 

  28. Nur ZatiIwani AK, Jalaludin MY, Yahya A et al (2022) TG: HDL-C ratio as insulin resistance marker for metabolic syndrome in children with obesity. Front Endocrinol (Lausanne). https://doi.org/10.3389/FENDO.2022.852290

    Article  Google Scholar 

  29. Newsome PN, Sasso M, Deeks JJ et al (2020) FibroScan-AST (FAST) score for the non-invasive identification of patients with non-alcoholic steatohepatitis with significant activity and fibrosis: a prospective derivation and global validation study. Lancet Gastroenterol Hepatol 5:362–373. https://doi.org/10.1016/S2468-1253(19)30383-8

    Article  PubMed  PubMed Central  Google Scholar 

  30. VCV000435828.8 - ClinVar - NCBI. https://www.ncbi.nlm.nih.gov/clinvar/variation/435828/?new_evidence=true. Accessed 8 Nov 2022

  31. Grinbaum R, Beglaibter N, Mitrani-Rosenbaum S et al (2022) The Obesogenic and glycemic effect of bariatric surgery in a family with a melanocortin 4 receptor loss-of-function mutation. Metabolites 12:430. https://doi.org/10.3390/METABO12050430

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  32. Maturity-Onset Diabetes of the Young, Type 3 disease: Malacards - Research Articles, Drugs, Genes, Clinical Trials. https://www.malacards.org/card/maturity_onset_diabetes_of_the_young_type_3?showAll=True. Accessed 8 Nov 2022

  33. NM_000527.5(LDLR):c.1720C>T (p.Arg574Cys) AND Hypercholesterolemia, familial, 1 - ClinVar - NCBI. https://www.ncbi.nlm.nih.gov/clinvar/RCV000238063/. Accessed 8 Nov 2022

  34. Newsome PN, Buchholtz K, Cusi K et al (2021) A placebo-controlled trial of subcutaneous semaglutide in nonalcoholic steatohepatitis. N Engl J Med 384:1113–1124. https://doi.org/10.1056/NEJMOA2028395

    Article  CAS  PubMed  Google Scholar 

  35. Ceriotti F, Henny J, Queraltó J et al (2010) Common reference intervals for aspartate aminotransferase (AST), alanine aminotransferase (ALT) and γ-glutamyl transferase (GGT) in serum: results from an IFCC multicenter study. Clin Chem Lab Med 48:1593–1601. https://doi.org/10.1515/CCLM.2010.315/MACHINEREADABLECITATION/RIS

    Article  CAS  PubMed  Google Scholar 

  36. Kwo PY, Cohen SM, Lim JK (2017) ACG clinical guideline: evaluation of abnormal liver chemistries. Am J Gastroenterol 112:18–35. https://doi.org/10.1038/AJG.2016.517

    Article  CAS  PubMed  Google Scholar 

  37. Iepsen EW, Have CT, Veedfald S et al (2020) GLP-1 receptor agonist treatment in morbid obesity and type 2 diabetes due to pathogenic homozygous melanocortin-4 receptor mutation: a case report. Cell reports Med. https://doi.org/10.1016/J.XCRM.2020.100006

    Article  Google Scholar 

  38. Bae JH, Choi HJ, Cho KIK et al (2020) Glucagon-like peptide-1 receptor agonist differentially affects brain activation in response to visual food cues in lean and obese individuals with type 2 diabetes mellitus. Diabetes Metab J 44:248. https://doi.org/10.4093/DMJ.2019.0018

    Article  PubMed  Google Scholar 

  39. Østoft SH, Bagger JI, Hansen T et al (2014) Glucose-lowering effects and low risk of hypoglycemia in patients with maturity-onset diabetes of the young when treated with a GLP-1 receptor agonist: a double-blind, randomized, crossover trial. Diabetes Care 37:1797–1805. https://doi.org/10.2337/DC13-3007

    Article  PubMed  Google Scholar 

  40. Mantovani A, Petracca G, Beatrice G et al (2021) Glucagon-like peptide-1 receptor agonists for treatment of nonalcoholic fatty liver disease and nonalcoholic steatohepatitis: an updated meta-analysis of randomized controlled trials. Metabolites 11:1–13. https://doi.org/10.3390/METABO11020073

    Article  Google Scholar 

  41. Wu L, Zhou M, Li T et al (2022) GLP-1 regulates exercise endurance and skeletal muscle remodeling via GLP-1R/AMPK pathway. Biochim Biophys acta Mol cell Res. https://doi.org/10.1016/J.BBAMCR.2022.119300

    Article  PubMed  Google Scholar 

  42. Yamada S, Ogura Y, Inoue K et al (2022) Effect of GLP-1 receptor agonist, liraglutide, on muscle in spontaneously diabetic torii fatty rats. Mol Cell Endocrinol 539:111472. https://doi.org/10.1016/J.MCE.2021.111472

    Article  CAS  PubMed  Google Scholar 

  43. Abdulla H, Phillips BE, Wilkinson DJ et al (2020) Glucagon-like peptide 1 infusions overcome anabolic resistance to feeding in older human muscle. Aging Cell 19:e13202. https://doi.org/10.1111/ACEL.13202

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  44. Gurjar AA, Kushwaha S, Chattopadhyay S et al (2020) Long acting GLP-1 analog liraglutide ameliorates skeletal muscle atrophy in rodents. Metabolism 103:154044. https://doi.org/10.1016/J.METABOL.2019.154044

    Article  CAS  PubMed  Google Scholar 

  45. Ayan E, DeMirci H (2022) A brief atlas of insulin. Curr Diabetes Rev. https://doi.org/10.2174/1573399819666220610150342

    Article  Google Scholar 

Download references

Acknowledgements

The authors are grateful to the patients and their families for their consent to share their unique vignettes, to the multidisciplinary team of dedicated health-care professionals caring for these patients, and to Esther Eshkol for editorial assistance.

Funding

None.

Author information

Authors and Affiliations

Authors

Contributions

YL and AB helped in conceptualization; HZ, RL, AA, HM-L, LS, MY-B, OB, EC, YL, and AB helped in data curation; HZ, RL, AA, HM-L, LS, MY-B, OB, EC, YL, and AB worked in investigation; HZ and AB helped in writing—original draft; and HZ, RL, AA, HM-L, LS, MY-B, OB, EC, YL, and AB helped in writing—review and editing. All authors have read and agreed to the published version of the manuscript.

Corresponding author

Correspondence to Avivit Brener.

Ethics declarations

Conflict of interest

The authors declare that there is no conflict of interest.

Ethical approval

The institutional ethics committee after careful consideration and deliberation in each case approved the off-label use of liraglutide.

Informed consent

The patients and their parents gave their informed consent to publish their case.

Additional information

Managed by Massimo Federici.

Publisher's Note

Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Rights and permissions

Springer Nature or its licensor (e.g. a society or other partner) holds exclusive rights to this article under a publishing agreement with the author(s) or other rightsholder(s); author self-archiving of the accepted manuscript version of this article is solely governed by the terms of such publishing agreement and applicable law.

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Zaitoon, H., Lubetzky, R., Amir, A.Z. et al. Glucagon-like peptide-1 analog therapy in rare genetic diseases: monogenic obesity, monogenic diabetes, and spinal muscular atrophy. Acta Diabetol 60, 1099–1108 (2023). https://doi.org/10.1007/s00592-023-02109-9

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s00592-023-02109-9

Keywords

Navigation