Skip to main content
Log in

Saikosaponin d (SSD) alleviates diabetic peripheral neuropathy by regulating the AQP1/RhoA/ROCK signaling in streptozotocin-induced diabetic rats

  • Original Article
  • Published:
Acta Diabetologica Aims and scope Submit manuscript

Abstract

Aims

Diabetic peripheral neuropathy (DPN) is one of the most important complications of diabetes with a poor prognosis. Saikosaponin d (SSD) is a triterpenoid saponin isolated from Radix Bupleuri that has multiple pharmacological activities. However, whether SSD affects DPN is unclarified.

Methods

Sprague Dawley rats were treated with streptozotocin (STZ) and high-fat diet (HFD) to induce DPN, in the presence or absence of SSD, with or without transfection of lentivirus vectors carrying siRNA targeting aquaporin 1 (si-AQP1). The body weight, plasma glucose levels, mechanical and thermal hyperalgesia, and nerve conductive velocity (NCV) of rats were measured. Hematoxylin–Eosin staining was used for histopathological observation of sciatic nerves. RT-qPCR and western blotting were utilized for measuring expression levels of AQP1 and ras homolog family member A/Rho-associated protein kinase (RhoA/ROCK) signaling pathway-related markers in dorsal root ganglion (DRG) of rats.

Results

SSD increased the body weight, decreased plasma glucose levels, attenuated mechanical and thermal hyperalgesia, enhanced NCV and reduced proinflammatory cytokine levels in DPN rats. AQP1 displayed a high level in DPN rats and SSD treatment repressed the expression of AQP1. SSD enhanced the protective effect of AQP1 knockdown on the pathological changes of DPN. AQP1 depletion suppressed the activation of RhoA/ROCK signaling pathway in DPN rats.

Conclusion

SSD alleviates STZ/HFD-induced DPN in rats by inhibiting the AQP1/RhoA/ROCK signaling pathway.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4

Similar content being viewed by others

Abbreviations

DPN:

Diabetic peripheral neuropathy

SSD:

Saikosaponin d

STZ:

Streptozotocin

HFD:

High-fat diet

DRG:

Dorsal root ganglion

siRNA:

Small interference RNA

AQP1:

Aquaporin 1

RhoA:

Ras homolog family member A

ROCK:

Rho-associated protein kinase

LIMK:

LIM-domain kinase 1

TNF-α:

Tumor necrosis factor alpha

IL-1β:

Interleukin 1beta

IL-6:

Interleukin 6

PWL:

Paw withdrawal threshold

NCV:

Nerve conductive velocity

MNCV:

Motor NCV

SNCV:

Sensory NCV

ELISA:

Enzyme-linked immunosorbent assay

RT-qPCR:

Real-time quantitative polymerase chain reaction

ANOVA:

Analysis of variance

References

  1. Pop-Busui R, Boulton AJ, Feldman EL et al (2017) Diabetic neuropathy: a position statement by the american diabetes association. Diabetes Care 40(1):136–154

    Article  CAS  PubMed  Google Scholar 

  2. Xu C, Hou B, He P et al (2020) Neuroprotective effect of salvianolic acid A against diabetic peripheral neuropathy through modulation of Nrf2. Oxid Med Cell Longev 2020:6431459

    Article  PubMed  PubMed Central  Google Scholar 

  3. Castelli G, Desai KM, Cantone RE (2020) Peripheral neuropathy: evaluation and differential diagnosis. Am Fam Physician 102(12):732–739

    PubMed  Google Scholar 

  4. Addepalli V, Suryavanshi SV (2018) Catechin attenuates diabetic autonomic neuropathy in streptozotocin induced diabetic rats. Biomed Pharmacother 108:1517–1523

    Article  CAS  PubMed  Google Scholar 

  5. Yang K, Wang Y, Li YW et al (2022) Progress in the treatment of diabetic peripheral neuropathy. Biomed Pharmacother 148:112717

    Article  CAS  PubMed  Google Scholar 

  6. Liu J, Dong B, Yang L et al (2021) Xuefu Zhuyu decoction for nonalcoholic fatty liver disease: a protocol for systematic review and meta-analysis. Medicine (Baltimore) 100(19):e25358

    Article  CAS  PubMed  Google Scholar 

  7. Liu X, Zheng X, Du G et al (2019) Brain metabonomics study of the antidepressant-like effect of Xiaoyaosan on the CUMS-depression rats by (1)H NMR analysis. J Ethnopharmacol 235:141–154

    Article  CAS  PubMed  Google Scholar 

  8. Ashour ML, Wink M (2011) Genus Bupleurum: a review of its phytochemistry, pharmacology and modes of action. J Pharm Pharmacol 63(3):305–321

    Article  CAS  PubMed  Google Scholar 

  9. Yuan B, Yang R, Ma Y et al (2017) A systematic review of the active saikosaponins and extracts isolated from Radix Bupleuri and their applications. Pharm Biol 55(1):620–635

    Article  CAS  PubMed  Google Scholar 

  10. Lin X, Wu S, Wang Q et al (2016) Saikosaponin-D reduces H(2)O(2)-induced PC12 cell apoptosis by removing ROS and blocking MAPK-dependent oxidative damage. Cell Mol Neurobiol 36(8):1365–1375

    Article  CAS  PubMed  Google Scholar 

  11. Li ZY, Jiang YM, Liu YM et al (2014) Saikosaponin D acts against corticosterone-induced apoptosis via regulation of mitochondrial GR translocation and a GR-dependent pathway. Prog Neuropsychopharmacol Biol Psychiatry 53:80–89

    Article  CAS  PubMed  Google Scholar 

  12. Zhao L, Zhang H, Bao J et al (2015) Saikosaponin-d protects renal tubular epithelial cell against high glucose induced injury through modulation of SIRT3. Int J Clin Exp Med 8(4):6472–6481

    PubMed  PubMed Central  Google Scholar 

  13. Segura-Anaya E, Martínez-Gómez A, Dent MA (2015) Localization of aquaporin 1 water channel in the Schmidt–Lanterman incisures and the paranodal regions of the rat sciatic nerve. Neuroscience 285:119–127

    Article  CAS  PubMed  Google Scholar 

  14. Gao H, He C, Fang X et al (2006) Localization of aquaporin-1 water channel in glial cells of the human peripheral nervous system. Glia 53(7):783–787

    Article  PubMed  Google Scholar 

  15. Zhang H, Verkman AS (2010) Aquaporin-1 tunes pain perception by interaction with Na(v)1.8 Na+ channels in dorsal root ganglion neurons. J Biol Chem 285(8):5896–5906

    Article  CAS  PubMed  Google Scholar 

  16. Jiang Y (2009) Aquaporin-1 activity of plasma membrane affects HT20 colon cancer cell migration. IUBMB Life 61(10):1001–1009

    Article  CAS  PubMed  Google Scholar 

  17. Sun Z, Wu X, Li W et al (2016) RhoA/rock signaling mediates peroxynitrite-induced functional impairment of Rat coronary vessels. BMC Cardiovasc Disord 16(1):193

    Article  PubMed  PubMed Central  Google Scholar 

  18. Yan Q, Wang X, Zha M et al (2018) The RhoA/ROCK signaling pathway affects the development of diabetic nephropathy resulting from the epithelial to mesenchymal transition. Int J Clin Exp Pathol 11(9):4296–4304

    CAS  PubMed  PubMed Central  Google Scholar 

  19. Zhu L, Wang W, Xie TH et al (2020) TGR5 receptor activation attenuates diabetic retinopathy through suppression of RhoA/ROCK signaling. Faseb j 34(3):4189–4203

    Article  CAS  PubMed  Google Scholar 

  20. Xu L, Su J, Guo L et al (2019) Modulation of LPA1 receptor-mediated neuronal apoptosis by Saikosaponin-d: A target involved in depression. Neuropharmacology 155:150–161

    Article  CAS  PubMed  Google Scholar 

  21. Shi X, Chen Y, Nadeem L et al (2013) Beneficial effect of TNF-α inhibition on diabetic peripheral neuropathy. J Neuroinflammation 10:69

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  22. Yu MX, Lei B, Song X et al (2021) Compound XiongShao Capsule ameliorates streptozotocin-induced diabetic peripheral neuropathy in rats via inhibiting apoptosis, oxidative—nitrosative stress and advanced glycation end products. J Ethnopharmacol 268:113560

    Article  CAS  PubMed  Google Scholar 

  23. Wang M, Xie M, Yu S et al (2021) Lipin1 alleviates autophagy disorder in sciatic nerve and improves diabetic peripheral neuropathy. Mol Neurobiol 58(11):6049–6061

    Article  CAS  PubMed  Google Scholar 

  24. Dang SS, Wang BF, Cheng YA et al (2007) Inhibitory effects of saikosaponin-d on CCl4-induced hepatic fibrogenesis in rats. World J Gastroenterol 13(4):557–563

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  25. Lu XL, He SX, Ren MD et al (2012) Chemopreventive effect of saikosaponin-d on diethylinitrosamine-induced hepatocarcinogenesis: involvement of CCAAT/enhancer binding protein β and cyclooxygenase-2. Mol Med Rep 5(3):637–644

    CAS  PubMed  Google Scholar 

  26. Impellizzeri D, Peritore AF, Cordaro M et al (2019) The neuroprotective effects of micronized PEA (PEA-m) formulation on diabetic peripheral neuropathy in mice. FASEB J 33(10):11364–11380

    Article  CAS  PubMed  Google Scholar 

  27. Ding Y, Dai X, Zhang Z et al (2014) Proanthocyanidins protect against early diabetic peripheral neuropathy by modulating endoplasmic reticulum stress. J Nutr Biochem 25(7):765–772

    Article  CAS  PubMed  Google Scholar 

  28. Barrell K, Smith AG (2019) Peripheral neuropathy. Med Clin North Am 103(2):383–397

    Article  PubMed  Google Scholar 

  29. Hagen KM, Ousman SS (2021) Aging and the immune response in diabetic peripheral neuropathy. J Neuroimmunol 355:577574

    Article  CAS  PubMed  Google Scholar 

  30. Xie J, Song W, Liang X et al (2020) Jinmaitong ameliorates diabetic peripheral neuropathy in streptozotocin-induced diabetic rats by modulating gut microbiota and neuregulin 1. Aging (Albany NY) 12(17):17436–17458

    Article  CAS  PubMed  Google Scholar 

  31. Jiang J, Meng Y, Hu S et al (2020) Saikosaponin D: a potential therapeutic drug for osteoarthritis. J Tissue Eng Regen Med 14(8):1175–1184

    Article  CAS  PubMed  Google Scholar 

  32. Zhou P, Shi W, He XY et al (2021) Saikosaponin D: review on the antitumour effects, toxicity and pharmacokinetics. Pharm Biol 59(1):1480–1489

    Article  CAS  PubMed  Google Scholar 

  33. Chen Y, Que R, Zhang N et al (2021) Saikosaponin-d alleviates hepatic fibrosis through regulating GPER1/autophagy signaling. Mol Biol Rep 48(12):7853–7863

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  34. Su J, Pan YW, Wang SQ et al (2020) Saikosaponin-d attenuated lipopolysaccharide-induced depressive-like behaviors via inhibiting microglia activation and neuroinflammation. Int Immunopharmacol 80:106181

    Article  CAS  PubMed  Google Scholar 

  35. Wang Z, Li J, Wu W et al (2021) Saikosaponin D rescues deficits in sexual behavior and ameliorates neurological dysfunction in mice exposed to chronic mild stress. Front Pharmacol 12:625074

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  36. Canta A, Chiorazzi A, Meregalli C et al (2009) Continuous buprenorphine delivery effect in streptozotocine-induced painful diabetic neuropathy in rats. J Pain 10(9):961–968

    Article  CAS  PubMed  Google Scholar 

  37. Feldman EL, Nave KA, Jensen TS et al (2017) New horizons in diabetic neuropathy: mechanisms, bioenergetics, and pain. Neuron 93(6):1296–1313

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  38. Chen M, Li Y, Xiao L et al (2020) AQP1 modulates tendon stem/progenitor cells senescence during tendon aging. Cell Death Dis 11(3):193

    Article  PubMed  PubMed Central  Google Scholar 

  39. Hua Y, Ying X, Qian Y et al (2019) Physiological and pathological impact of AQP1 knockout in mice. Biosci Rep 39(5)

  40. Oshio K, Watanabe H, Yan D et al (2006) Impaired pain sensation in mice lacking Aquaporin-1 water channels. Biochem Biophys Res Commun 341(4):1022–1028

    Article  CAS  PubMed  Google Scholar 

  41. Wu Z, Li S, Liu J et al (2015) RNAi-mediated silencing of AQP1 expression inhibited the proliferation, invasion and tumorigenesis of osteosarcoma cells. Cancer Biol Ther 16(9):1332–1340

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  42. Zhou H, Li YJ (2010) RhoA/Rho kinase: a novel therapeutic target in diabetic complications. Chin Med J (Engl) 123(17):2461–2466

    CAS  PubMed  Google Scholar 

  43. Martín-Cámara O, Cores A, Lopez-Alvarado P et al (2021) Emerging targets in drug discovery against neurodegenerative diseases: Control of synapsis disfunction by the RhoA/ROCK pathway. Eur J Med Chem 225:113742

    Article  PubMed  Google Scholar 

Download references

Acknowledgements

Not applicable.

Funding

The work was supported by Hubei Provincial Health and Health Commission Traditional Chinese Medicine Research Project, Young Talent Project (Approval Number: ZY2021Q037).

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Qingwei Xiang.

Ethics declarations

Conflict of interest

The authors declare that they have no conflict of interest.

Ethical statement

All animal experiments were conducted following the National Institutes of Health (NIH) Guide for the Care and Use of Laboratory Animals and approved by the Animal Ethics Committee of Hubei Provincial Hospital of Traditional Chinese Medicine, Hubei Province Academy of Traditional Chinese Medicine.

Informed consent

Informed consent is not required in this study.

Additional information

Managed by Massimo Porta.

Publisher's Note

Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Rights and permissions

Springer Nature or its licensor (e.g. a society or other partner) holds exclusive rights to this article under a publishing agreement with the author(s) or other rightsholder(s); author self-archiving of the accepted manuscript version of this article is solely governed by the terms of such publishing agreement and applicable law.

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Xiang, Q., Liu, Y. & Chen, L. Saikosaponin d (SSD) alleviates diabetic peripheral neuropathy by regulating the AQP1/RhoA/ROCK signaling in streptozotocin-induced diabetic rats. Acta Diabetol 60, 805–815 (2023). https://doi.org/10.1007/s00592-023-02060-9

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s00592-023-02060-9

Keywords

Navigation