Skip to main content
Log in

Remnant cholesterol for the detection of glucose metabolic states in patients with coronary heart disease angina pectoris

  • Original Article
  • Published:
Acta Diabetologica Aims and scope Submit manuscript

Abstract

Background

This study aimed to evaluate the relationship between remnant cholesterol (RC) and glucose metabolic states in coronary heart disease (CHD) patients with angina pectoris.

Methods

This study collected data from 11,557 CHD patients with angina pectoris aged 35–75 years in Tianjin, China. Participants were divided into normal glucose regulation (NGR), prediabetes (Pre-DM) and diabetes mellitus (DM) groups according to glucose metabolic states. Linear regression analysis was used to explore the relationship between glucose metabolism [fasting blood glucose (FBG) and glycated hemoglobin (HbA1c)] and RC levels. Logistic regression was performed to analyze the relationship between RC levels and glucose metabolic states.

Results

Among all participants, 5883 (50.9%) had a DM state and 4034 (34.9%) had a Pre-DM state. FBG levels and HbA1c levels were positively related with RC in all patients (P < 0.001). NGR was used as a reference, multi-adjusted model showing that RC level was significantly associated with Pre-DM [Odds ratio (OR): 1.37; 95% confidence interval (CI) 1.19–1.56; P < 0.001] and DM state (OR:1.47; 95% CI 1.29–1.67; P < 0.001). When considering RC as categorical variables (tertiles), using T1 as a reference, T3 had the strongest relationship between RC levels and Pre-DM and DM state in univariate model and multivariate model. In the stratified analyses, the association between RC levels and pre-DM and DM in women was higher than that in men, and the elderly patients was higher than in the middle-aged patients.

Conclusion

The study demonstrated a significant association between RC levels and pre-DM and DM state among CHD patients with angina pectoris, and the relationship was stronger in women and elderly patients.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Similar content being viewed by others

Data availability

The datasets and analyzed used in the present study are available from the corresponding author on reasonable request.

Abbreviations

CHD:

Coronary heart disease

CAD:

Coronary artery disease

DM:

Diabetes mellitus

Pre-DM:

Prediabetes

TG:

Triglycerides

TC:

Total cholesterol

HDL-C:

High-density lipoprotein cholesterol

LDL-C:

Low-density lipoprotein cholesterol

VLDL:

Very-low-density Lipoproteins

IR:

Insulin resistance

HOMA-IR:

Homeostasis model assessment of insulin resistance

FBG:

Fasting blood glucose

HbA1c:

Glycated hemoglobin

SBP:

Systolic blood pressure

DBP:

Diastolic blood pressure

NGR:

Normal glucose regulation

OR:

Odds ratio

95% CI:

95% Confidence intervals

SEM:

Standard error of estimate

References

  1. Xing DM, Zhu MJ, Liu CX et al (2021) Outcome measures in clinical trials of traditional chinese medicine for stable angina pectoris. Acupunct Herb Med 1(2):99–106. https://doi.org/10.1097/HM9.0000000000000014

    Article  Google Scholar 

  2. Schopfer DW, Beatty AL, Meyer CS et al (2022) Longitudinal association between angina pectoris and quality of life. Am J Cardiol 1(164):1–6. https://doi.org/10.1016/j.amjcard.2021.10.037

    Article  Google Scholar 

  3. Goodarzi MO, Rotter JI (2020) Genetics insights in the relationship between type 2 diabetes and coronary heart disease. Circ Res 126(11):1526–1548. https://doi.org/10.1161/CIRCRESAHA.119.316065

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  4. Brannick B, Dagogo-Jack S (2018) Prediabetes and cardiovascular disease: pathophysiology and interventions for prevention and risk reduction. Endocrinol Metab Clin North Am 47(1):33–50. https://doi.org/10.1016/j.ecl.2017.10.001

    Article  PubMed  PubMed Central  Google Scholar 

  5. Zhang HW, Jin JL, Cao YX et al (2021) Association of diabetes mellitus with clinical outcomes in patients with different coronary artery stenosis. Cardiovasc Diabetol 20(1):214. https://doi.org/10.1186/s12933-021-01403-6

    Article  PubMed  PubMed Central  Google Scholar 

  6. Farhan S, Redfors B, Maehara A et al (2019) Impact of pre-diabetes on coronary plaque composition and clinical outcome in patients with acute coronary syndromes: an analysis from the PROSPECT study. JACC Cardiovasc Imaging 12(4):733–741. https://doi.org/10.1016/j.jcmg.2017.06.023

    Article  PubMed  Google Scholar 

  7. Vergès B (2015) Pathophysiology of diabetic dyslipidaemia: where are we? Diabetologia 58(5):886–899. https://doi.org/10.1007/s00125-015-3525-8

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  8. Filippatos T, Tsimihodimos V, Pappa E et al (2017) Pathophysiology of diabetic dyslipidaemia. Curr Vasc Pharmacol 15(6):566–575. https://doi.org/10.2174/1570161115666170201105425

    Article  CAS  PubMed  Google Scholar 

  9. Varbo A, Nordestgaard BG (2016) Remnant cholesterol and triglyceride-rich lipoproteins in atherosclerosis progression and cardiovascular disease. Arterioscler Thromb Vasc Biol 36(11):2133–2135. https://doi.org/10.1161/ATVBAHA.116.308305

    Article  CAS  PubMed  Google Scholar 

  10. Twickler TB, Dallinga-Thie GM, Cohn JS et al (2004) Elevated remnant-like particle cholesterol concentration: a characteristic feature of the atherogenic lipoprotein phenotype. Circulation 109(16):1918–1925. https://doi.org/10.1161/01.CIR.0000125278.58527.F3

    Article  CAS  PubMed  Google Scholar 

  11. Chakraborty M, Singh P, Dsouza JMP et al (2020) Fasting and postprandial lipid parameters: a comparative evaluation of cardiovascular risk assessment in prediabetes and diabetes. J Family Med Prim Care 9(1):287–292. https://doi.org/10.4103/jfmpc.jfmpc_769_19

    Article  PubMed  PubMed Central  Google Scholar 

  12. Park CY, Park JY, Choi J et al (2016) Increased postprandial apolipoprotein B-48 level after a test meal in diabetic patients: a multicenter, cross-sectional study. Metabolism 65(6):843–851. https://doi.org/10.1016/j.metabol.2016.02.008

    Article  CAS  PubMed  Google Scholar 

  13. Castañer O, Pintó X, Subirana I et al (2020) Remnant cholesterol, not LDL cholesterol, is associated with incident cardiovascular disease. J Am Coll Cardiol 76(23):2712–2724. https://doi.org/10.1016/j.jacc.2020.10.008

    Article  CAS  PubMed  Google Scholar 

  14. Sandesara PB, Virani SS, Fazio S et al (2019) The forgotten lipids: triglycerides, remnant cholesterol, and atherosclerotic cardiovascular disease risk. Endocr Rev 40(2):537–557. https://doi.org/10.1210/er.2018-00184

    Article  PubMed  Google Scholar 

  15. Yu D, Wang Z, Zhang X et al (2021) Remnant cholesterol and cardiovascular mortality in patients with type 2 diabetes and incident diabetic nephropathy. J Clin Endocrinol Metab 106(12):3546–3554. https://doi.org/10.1210/clinem/dgab533

    Article  PubMed  Google Scholar 

  16. Shan Y, Wang Q, Zhang Y et al (2022) High remnant cholesterol level is relevant to diabetic retinopathy in type 2 diabetes mellitus. Lipids Health Dis 21(1):12. https://doi.org/10.1186/s12944-021-01621-7

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  17. Liu Y, Li Z, Shen D et al (2019) Adjuvant treatment of coronary heart disease angina pectoris with Chinese patent medicine: A prospective clinical cohort study. Medicine (Baltimore) 98(33):e16884. https://doi.org/10.1097/MD.0000000000016884

    Article  Google Scholar 

  18. Quispe R, Martin SS, Michos ED et al (2021) Remnant cholesterol predicts cardiovascular disease beyond LDL and ApoB: a primary prevention study. Eur Heart J 42(42):4324–4332. https://doi.org/10.1093/eurheartj/ehab432

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  19. Whelton PK, Carey RM, Aronow WS et al (2018) 2017 ACC/AHA/AAPA/ABC/ACPM/AGS/APhA/ASH/ASPC/NMA/PCNA guideline for the prevention, detection, evaluation, and management of high blood pressure in adults: a report of the american college of cardiology/american heart association task force on clinical practice guidelines. J Am Coll Cardiol 71(19):e127–e248. https://doi.org/10.1016/j.jacc.2017.11.006

    Article  PubMed  Google Scholar 

  20. Hong LF, Yan XN, Lu ZH et al (2017) Predictive value of non-fasting remnant cholesterol for short-term outcome of diabetics with new-onset stable coronary artery disease. Lipids Health Dis 16(1):7. https://doi.org/10.1186/s12944-017-0410-0

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  21. American Diabetes Association 2 (2021) classification and diagnosis of diabetes: standards of medical care in diabetes-2021. Diabetes Care 44(1):S15-S33. Doi: https://doi.org/10.2337/dc21-S002

  22. Bragg F, Holmes MV, Iona A et al (2017) China kadoorie biobank collaborative group. association between diabetes and cause-specific mortality in rural and urban areas of China. JAMA 17(3):280–289. https://doi.org/10.1001/jama.2016.19720

    Article  Google Scholar 

  23. Emerging Risk Factors Collaboration, Sarwar N, Gao P, et al (2010) Diabetes mellitus, fasting blood glucose concentration, and risk of vascular disease: a collaborative meta-analysis of 102 prospective studies. Lancet 375(9733):2215–22. Doi: https://doi.org/10.1016/S0140-6736(10)60484-9

  24. Tabák AG, Herder C, Rathmann W, Brunner EJ, Kivimäki M (2012) Prediabetes: a high-risk state for diabetes development. Lancet 379(9833):2279–2290. https://doi.org/10.1016/S0140-6736(12)60283-9

    Article  PubMed  PubMed Central  Google Scholar 

  25. Liang Y, Wang M, Wang C et al (2021) The mechanisms of the development of atherosclerosis in prediabetes. Int J Mol Sci 22(8):4108. https://doi.org/10.3390/ijms22084108

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  26. Song Q, Liu X, Wang A et al (2016) Associations between non-traditional lipid measures and risk for type 2 diabetes mellitus in a Chinese community population: a cross-sectional study. Lipids Health Dis 5(15):70. https://doi.org/10.1186/s12944-016-0239-y

    Article  CAS  Google Scholar 

  27. Han M, Li Q, Qie R et al (2020) Association of non-HDL-C/HDL-C ratio and its dynamic changes with incident type 2 diabetes mellitus: the rural chinese cohort study. J Diabetes Complicat 34(12):107712. https://doi.org/10.1016/j.jdiacomp.2020.107712

    Article  Google Scholar 

  28. Kuang M, Peng N, Qiu J et al (2022) Association of LDL:HDL ratio with prediabetes risk: a longitudinal observational study based on chinese adults. Lipids Health Dis 21(1):44. https://doi.org/10.1186/s12944-022-01655-5

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  29. Nur Zati Iwani AK, Jalaludin MY, Yahya A et al (2022) TG: HDL-C ratio as insulin resistance marker for metabolic syndrome in children with obesity. Front Endocrinol (Lausanne) 10(13):852290. https://doi.org/10.3389/fendo.2022.852290

    Article  Google Scholar 

  30. He J, He S, Liu K et al (2014) The TG/HDL-C ratio might be a surrogate for insulin resistance in chinese nonobese women. Int J Endocrinol 2014:105168. https://doi.org/10.1155/2014/105168

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  31. Liu H, Liu J, Liu J et al (2022) Triglyceride to high-density lipoprotein cholesterol (TG/HDL-C) ratio, a simple but effective indicator in predicting Type 2 diabetes mellitus in older adults. Front Endocrinol (Lausanne) 24(13):828581. https://doi.org/10.3389/fendo.2022.828581

    Article  Google Scholar 

  32. Kim SW, Jee JH, Kim HJ et al (2013) Non-HDL-cholesterol/HDL-cholesterol is a better predictor of metabolic syndrome and insulin resistance than apolipoprotein B/apolipoprotein A1. Int J Cardiol 168(3):2678–2683. https://doi.org/10.1016/j.ijcard.2013.03.027

    Article  PubMed  Google Scholar 

  33. Ohnishi H, Saitoh S, Takagi S et al (2002) Relationship between insulin-resistance and remnant-like particle cholesterol. Atherosclerosis 164(1):167–170. https://doi.org/10.1016/s0021-9150(02)00057-6

    Article  CAS  PubMed  Google Scholar 

  34. Taniguchi A, Fukushima M, Sakai M et al (2000) Remnant-like particle cholesterol, triglycerides, and insulin resistance in nonobese Japanese type 2 diabetic patients. Diabetes Care 23(12):1766–1769. https://doi.org/10.2337/diacare.23.12.1766

    Article  CAS  PubMed  Google Scholar 

  35. Schaefer EJ, McNamara JR, Shah PK et al (2002) Framingham offspring study. Elevated remnant-like particle cholesterol and triglyceride levels in diabetic men and women in the framingham offspring study. Diabetes Care 25(6):989–994. https://doi.org/10.2337/diacare.25.6.989

    Article  CAS  PubMed  Google Scholar 

  36. Jansson Sigfrids F, Dahlström EH, Forsblom C et al (2021) Remnant cholesterol predicts progression of diabetic nephropathy and retinopathy in type 1 diabetes. J Intern Med 290(3):632–645. https://doi.org/10.1111/joim.13298

    Article  CAS  PubMed  Google Scholar 

  37. Unger RH, Zhou YT (2001) Lipotoxicity of beta-cells in obesity and in other causes of fatty acid spillover. Diabetes 50(1):S118–S121. https://doi.org/10.2337/diabetes.50.2007.s118

    Article  CAS  PubMed  Google Scholar 

  38. Glass CK, Olefsky JM (2012) Inflammation and lipid signaling in the etiology of insulin resistance. Cell Metab 15(5):635–645. https://doi.org/10.1016/j.cmet.2012.04.001

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  39. Varbo A, Benn M, Tybjærg-Hansen A et al (2013) Elevated remnant cholesterol causes both low-grade inflammation and ischemic heart disease, whereas elevated low-density lipoprotein cholesterol causes ischemic heart disease without inflammation. Circulation 128(12):1298–1309. https://doi.org/10.1161/CIRCULATIONAHA.113.003008

    Article  CAS  PubMed  Google Scholar 

  40. Aramaki Y, Mitsuoka H, Toyohara M et al (2008) Lectin-like oxidized LDL receptor-1 (LOX-1) acts as a receptor for remnant-like lipoprotein particles (RLPs) and mediates RLP-induced migration of vascular smooth muscle cells. Atherosclerosis 198(2):272–279. https://doi.org/10.1016/j.atherosclerosis.2007.12.017

    Article  CAS  PubMed  Google Scholar 

  41. Wu L, Parhofer KG (2014) Diabetic dyslipidemia. Metabolism 63(12):1469–1479. https://doi.org/10.1016/j.metabol.2014.08.010

    Article  CAS  PubMed  Google Scholar 

  42. Kautzky-Willer A, Harreiter J, Pacini G (2016) Sex and gender differences in risk, pathophysiology and complications of type 2 diabetes mellitus. Endocr Rev 37(3):278–316. https://doi.org/10.1210/er.2015-1137

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  43. Nakagomi A, Sunami Y, Kawasaki Y et al (2020) Sex difference in the association between surrogate markers of insulin resistance and arterial stiffness. J Diabetes Complications 34(6):107442. https://doi.org/10.1016/j.jdiacomp.2019.107442

    Article  PubMed  Google Scholar 

  44. Pucci G, Alcidi R, Tap L et al (2017) Sex- and gender-related prevalence, cardiovascular risk and therapeutic approach in metabolic syndrome: a review of the literature. Pharmacol Res 120:34–42. https://doi.org/10.1016/j.phrs.2017.03.008

    Article  PubMed  Google Scholar 

  45. Mauvais-Jarvis F (2018) Gender differences in glucose homeostasis and diabetes. Physiol Behav 1(187):20–23. https://doi.org/10.1016/j.physbeh.2017.08.016

    Article  CAS  Google Scholar 

  46. Kurauti MA, Soares GM, Marmentini C et al (2021) Insulin and aging. Vitam Horm 115:185–219. https://doi.org/10.1016/bs.vh.2020.12.010

    Article  PubMed  Google Scholar 

  47. Ryan AS (2000) Insulin resistance with aging: effects of diet and exercise. Sports Med 30(5):327–346. https://doi.org/10.2165/00007256-200030050-00002

    Article  CAS  PubMed  Google Scholar 

  48. Motta M, Bennati E, Ferlito L et al (2008) Insulin-resistance (IR) in older age. Arch Gerontol Geriatr 46(2):203–209. https://doi.org/10.1016/j.archger.2007.04.001

    Article  CAS  PubMed  Google Scholar 

Download references

Acknowledgements

We thank all the participants in the study and the members of the survey teams for their important contributions.

Funding

This work was supported by the National Basic Research Program of China (973 project, grant numbers: 2014CB542902).

Author information

Authors and Affiliations

Authors

Contributions

CY, LL, XW were responsible for the study concept and design; YW, YL and RY analyzed the data together and drafted the manuscript; ZL, JS, TY, MM and GP contributed to data collection; All authors read and approved the final manuscript.

Corresponding authors

Correspondence to Xianliang Wang, Lin Li or Chunquan Yu.

Ethics declarations

Conflict of interest

The authors declare that they have no competing interests.

Ethics approval and consent to participate

The study has passed the ethical review by the ethics committee of Tianjin university of Traditional Chinese Medicine. The ethical review approval number is TJUTCM-EC20190008. It was registered in the Chinese Clinical Trial Registry on July 14, 2019 (registration number: ChiCTR1900024535) and in Clinical Trials.gov on July 18, 2019 (registration number: NCT04026724). All participants waived informed consent.

Consent for publication

Not applicable.

Additional information

Managed by Antonio Secchi.

Publisher's Note

Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Yang Wang, Yijia Liu and Rongrong Yang should be considered joint first author.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Wang, Y., Liu, Y., Yang, R. et al. Remnant cholesterol for the detection of glucose metabolic states in patients with coronary heart disease angina pectoris. Acta Diabetol 59, 1339–1347 (2022). https://doi.org/10.1007/s00592-022-01935-7

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s00592-022-01935-7

Keywords

Navigation