Skip to main content

Advertisement

Log in

Automated insulin delivery systems: from early research to routine care of type 1 diabetes

  • Review Article
  • Published:
Acta Diabetologica Aims and scope Submit manuscript

Abstract

Automated insulin delivery (AID) systems, so-called closed-loop systems or artificial pancreas, are based upon the concept of insulin supply driven by blood glucose levels and their variations according to body glucose needs, glucose intakes and insulin action. They include a continuous glucose monitoring device which provides a signal to a control algorithm tuning insulin delivery from an infusion pump. The control algorithm is the key of the system since it commands insulin administration in order to maintain blood glucose in a predefined target range and close to a near-normal glucose level. The last two decades have shown dramatic advances toward the use in free life of AID systems for routine care of type 1 diabetes through step-by-step demonstrations of feasibility, safety and efficacy in successive hospital, transitional and outpatient trials. Because of the constraints of pharmacokinetics and dynamics of subcutaneous insulin delivery, the currently available AID systems are all ‘hybrid’ or ‘semi-automated’ insulin delivery systems with a need of meal and exercise announcements in order to anticipate rapid glucose variations through pre-meal bolus or pre-exercise reduction of infusion rate. Nevertheless, these AID systems significantly improve time spent in a near-normal range with a reduction of the risk of hypoglycemia and the mental load of managing diabetes in everyday life, representing a milestone in insulin therapy. Expected progression toward fully automated, further miniaturized and integrated, possibly implantable on long-term and more physiological closed-loop systems paves the way for a functional cure of type 1 diabetes.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2

Similar content being viewed by others

References

  1. The Diabetes Control and Complications Trial Research Group (DCCT). The effect of intensive treatment of diabetes on the development and progression of long-term complications in insulin-dependent diabetes mellitus. N Engl J Med. 1993; 329:977–986

  2. Nathan DM and for the DCCT/EDIC Research Group (2014) The diabetes control and complications trial/epidemiology of diabetes interventions and complications study at 30 years: overview. Diabetes Care 37:9–16

    Article  Google Scholar 

  3. The DCCT Research Group (1991) Epidemiology of severe hypoglycemia in the diabetes control and complications trial. Am J Med 90:450–459

    Article  Google Scholar 

  4. Ruan Y, Thabit H, Leelarathna L, Hartnell S, Willinska ME, Dellweg S et al (2016) Variability of insulin requirements over 12 weeks of closed-loop insulin delivery in adults with type 1 diabetes. Diabetes Care 39:830–832

    Article  CAS  Google Scholar 

  5. Foster NC, Beck RW, Miller KM, Clements MA, Rickels MR, DiMeglio LA et al (2019) State of type 1 diabetes management and outcomes from the T1D exchange in 2016–2018. Diabetes Technol Ther 21:66–72

    Article  CAS  Google Scholar 

  6. Renard E, Ikegami H, Daher Vianna AG, Pozzilli P, Brette S, Bosnyak Z et al (2021) The SAGE study: global observational analysis of glycaemic control, hypoglycaemia and diabetes management in T1DM. Diabetes Metab Res Rev 37:e3430

    Article  CAS  Google Scholar 

  7. Cobelli C, Renard E, Kovatchev B (2011) Artificial pancreas: past, present, future. Diabetes 60:2672–2682

    Article  CAS  Google Scholar 

  8. Albisser AM, Leibel BS, Ewart TG, Davidovac Z, Botz CK, Zingg W (1974) An artificial endocrine pancreas. Diabetes 23:389–396

    Article  CAS  Google Scholar 

  9. Mirouze J, Selam JL, Pham TC, Cavadore D (1977) Evaluation of exogenous insulin homeostasis by the artificial pancreas in insulin-dependent diabetes. Diabetologia 13:273–278

    Article  CAS  Google Scholar 

  10. Shichiri M, Kawamori R, Yamasaki Y, Inoue M, Shigeta Y, Abe H (1978) Computer algorithm for the artificial pancreatic beta cell. Artif Organs 2(Suppl):247–250

    Google Scholar 

  11. Clemens AH, Chang PH, Myers RW. The development of Biostator, a glucose-controlled insulin infusion system (GCIIS). Horm Metab Res. 1977; Supplement: 23–33

  12. Mastrototaro J (2000) The minimed continuous glucose monitoring system. Diabetes Technol Ther 2(Supplement 1):S13–S18

    Article  Google Scholar 

  13. Kovatchev BP, Breton MD, Dalla Man C, Cobelli C (2009) In silico preclinical trials: a proof of concept in closed-loop control of type 1 diabetes. J Diabetes Sci Technol 3:44–55

    Article  Google Scholar 

  14. Renard E (2002) Implantable closed loop glucose-sensing and insulin delivery: the future for insulin pump therapy. Curr Opin Pharmacol 2:708–716

    Article  CAS  Google Scholar 

  15. Renard E, Costalat G, Chevassus H, Bringer J (2006) Artificial beta cell: clinical experience toward an implantable closed-loop insulin delivery system. Diabetes Metab 32:497–502

    Article  CAS  Google Scholar 

  16. Renard E, Place J, Cantwell M, Chevassus H, Palerm CC (2010) Closed-loop insulin delivery using a subcutaneous glucose sensor and intraperitoneal insulin delivery: feasibility study testing a new model for the artificial pancreas. Diabetes Care 33:121–127

    Article  CAS  Google Scholar 

  17. Hovorka R, Chassin LJ, Wilinska ME, Canonico V, Akwi JA, Federici MO et al (2004) Closing the loop: the ADICOL experience. Diabetes Technol Ther 6:307–318

    Article  CAS  Google Scholar 

  18. Steil GM, Rebrin K, Darwin C, Hariri F, Saad MF (2006) Feasibility of automating insulin delivery for the treatment of type 1 diabetes. Diabetes 55:3344–3350

    Article  CAS  Google Scholar 

  19. Weinzimer SA, Steil GM, Swan KL, Dziura J, Kurtz N, Tamborlane WV (2008) Fully automated closed-loop insulin delivery versus semi-automated hybrid control in pediatric patients with type 1 diabetes using an artificial pancreas. Diabetes Care 31:934–939

    Article  Google Scholar 

  20. Doyle FJ 3rd, Huyett LM, Lee JB, Zisser HC, Dassau E (2014) Closed-loop artificial pancreas systems: engineering the algorithms. Diabetes Care 37:1191–1197

    Article  Google Scholar 

  21. Hovorka R, Allen JM, Elleri D, Chassin LJ, Harris J, Xing D et al (2010) Manual closed-loop insulin delivery in children and adolescents with type 1 diabetes: a phase 2 randomised crossover trial. The Lancet 375:743–751

    Article  CAS  Google Scholar 

  22. Kovatchev B, Cobelli C, Renard E, Anderson S, Breton M, Patek S et al (2010) Multinational study of subcutaneous model-predictive closed-loop control in type 1 diabetes mellitus: summary of the results. J Diabetes Sci Technol 4:1374–1381

    Article  Google Scholar 

  23. Russell SJ, El-Khatib FH, Nathan DM, Magyar KL, Jiang J, Damiano ER (2012) Blood glucose control in type 1 diabetes with a bihormonal bionic endocrine pancreas. Diabetes Care 35:2148–2155

    Article  CAS  Google Scholar 

  24. Patek SD, Magni L, Dassau E, Karvetski C, Toffanin C, De Nicolao G et al (2012) Modular closed-loop control of diabetes. IEEE Trans Biomedical Eng 29:2986–3000

    Article  Google Scholar 

  25. Breton M, Farret A, Bruttomesso D, Anderson S, Magni L, Patek S et al (2012) Fully integrated artificial pancreas in type 1 diabetes: modular closed-loop glucose control maintains near normoglycemia. Diabetes 61:2230–2237

    Article  CAS  Google Scholar 

  26. Phillip M, Battelino T, Atlas E, Kordonouri O, Bratina N, Miller S et al (2013) Nocturnal glucose control with an artificial pancreas at a diabetes camp. N Engl J Med 368:824–833

    Article  CAS  Google Scholar 

  27. Luijf YM, Devries JH, Zwinderman K, Leelarathna L, Nodale M, Caldwell K et al (2013) Day and night closed-loop control in adults with type 1 diabetes mellitus: a comparison of two closed-loop algorithms driving continuous subcutaneous insulin infusion versus patient self-management. Diabetes Care 36:3882–3887

    Article  CAS  Google Scholar 

  28. Ly TT, Breton MD, Keith-Hynes P, De Salvo D, Clinton P, Benassi K et al (2014) Overnight glucose control win automated, unified safety system in children and adolescents with type 1 diabetes at diabetes camp. Diabetes Care 37:2310–2316

    Article  CAS  Google Scholar 

  29. Ly TT, Roy A, Grosman D, Shin J, Campbell A, Monirabbasi S et al (2015) Day and night closed-loop control using the integrated Medtronic hybrid closed-loop system in type 1 diabetes at diabetes camp. Diabetes Care 38:1205–1211

    Article  Google Scholar 

  30. Russell SJ, El-Khatib FH, Sinha M, Magyar KL, McKeon K, Goergen LG et al (2014) Outpatient glycemic control with a bionic pancreas in type 1 diabetes. N Engl J Med 371:313–325

    Article  Google Scholar 

  31. Cobelli C, Renard E, Kovatchev BP, Keith-Hynes P, Ben Brahim N, Place J et al (2012) Pilot studies of wearable outpatient artificial pancreas in type 1 diabetes. Diabetes Care 35:e65–e67

    Article  Google Scholar 

  32. Kovatchev BP, Renard E, Cobelli C, Zisser HC, Keith-Hynes P, Anderson SM et al (2013) Feasibility of outpatient fully integrated closed-loop control: first studies of wearable artificial pancreas. Diabetes Care 36:1851–1858

    Article  Google Scholar 

  33. Kovatchev BP, Renard E, Cobelli C, Zisser HC, Keith-Hynes P, Anderson SM et al (2014) Safety of outpatient closed-loop control: first randomized crossover trials of a wearable artificial pancreas. Diabetes Care 37:1789–1796

    Article  CAS  Google Scholar 

  34. Del Favero S, Place J, Kropff J, Keith-Hynes P, Visentin R, Monaro M et al (2015) Multicenter outpatient dinner/overnight reduction of hypoglycemia and increased time of glucose in target with a wearable artificial pancreas using modular model predictive control in adults with type 1 diabetes. Diabetes Obes Metab 17:468–476

    Article  Google Scholar 

  35. Brown SA, Kovatchev BP, Breton MD, Anderson SM, Keith-Hynes P, Patek SD et al (2015) Multinight « bedside » closed-loop control for patients with type 1 diabetes. Diabetes Technol Ther 17:203–209

    Article  CAS  Google Scholar 

  36. Nimri R, Muller I, Atlas E, Miller S, Fogel A, Bratina N et al (2014) MD-Logic overnight control for 6 weeks of home use in patients with type 1 diabetes: randomized crossover trial. Diabetes Care 37:3025–3032

    Article  CAS  Google Scholar 

  37. Thabit H, Lubina-Solomon A, Stadler M, Leelarathna L, Walkinshaw E, Pernet A et al (2014) Home use of closed-loop insulin delivery for overnight glucose control in adults with type 1 diabetes: a 4-week, multicentre, randomised crossover study. Lancet Diabetes Endocrinol 2:701–709

    Article  CAS  Google Scholar 

  38. Kropff J, Del Favero S, Place J, Toffanin C, Visentin R, Monaro M et al (2015) 2 month evening and night closed-loop glucose control in patients with type 1 diabetes under free-living conditions: a randomised crossover trial. Lancet Diabetes Endocrinol 3:939–947

    Article  Google Scholar 

  39. Renard E, Farret A, Kropff J, Bruttomesso D, Messori M, Place J et al (2016) Day-and-night closed-loop glucose control in patients with type 1 diabetes under free-living conditions: results of a single-arm 1-month experience compared with a previously reported feasibility study of evening and night at home. Diabetes Care 39:1151–1160

    Article  CAS  Google Scholar 

  40. Anderson SM, Raghinaru D, Pinsker JE, Boscari F, Renard E, Buckingham BA et al (2016) Multinational home use of closed-loop control is safe and effective. Diabetes Care 39:1143–1150

    Article  Google Scholar 

  41. Thabit H, Tauschmann M, Allen JM, Leelarathna L, Hartnell S, Wilinska ME et al (2015) Home use of an artificial beta cell in type 1 diabetes. N Engl J Med 373:2129–2140

    Article  CAS  Google Scholar 

  42. Kovatchev B, Cheng P, Anderson SM, Pinsker JE, Boscari F, Buckingham BA et al (2017) Feasibility of long-term closed-loop control: a multicenter 6-month trial of 24/7 automated insulin delivery. Diabetes Technol Ther 19:18–24

    Article  CAS  Google Scholar 

  43. Bergenstal RM, Garg S, Weinzimer SA, Buckingham BA, Bode BW, Tamborlane WV et al (2016) Safety of a hybrid closed-loop insulin delivery system in patients with type 1 diabetes. JAMA 316:1407–1408

    Article  Google Scholar 

  44. Garg SK, Weinzimer SA, Tamborlane WV, Buckingham BA, Bode BW, Bailey TS et al (2017) Glucose outcomes with the in-home use of a hybrid closed-loop insulin delivery system in adolescents and adults with type 1 diabetes. Diabetes Technol Ther 19:155–163

    Article  CAS  Google Scholar 

  45. Buckingham BA, Forlenza GP, Pinsker JE, Christiansen MP, Wadwa RP, Schneider J et al (2018) Safety and feasibility of the omnipod hybrid closed-loop system in adult, adolescent, and pediatric patients with type 1 diabetes using a personalized model predictive control algorithm. Diabetes Technol Ther 20:257–262

    Article  CAS  Google Scholar 

  46. Benhamou PY, Huneker E, Franc S, Doron M, Charpentier G (2018) Customization of home closed-loop insulin delivery in adult patients with type 1 diabetes, assisted with structured remote monitoring: the pilot WP7 Diabeloop study. Acta Diabetol 55(6):549–556. https://doi.org/10.1007/s00592-018-1123-1

    Article  CAS  Google Scholar 

  47. Blauw H, van Bon AC, Koops R, DeVries JH (2016) Performance and safety of an integrated bihormonal artificial pancreas for fully automated glucose control at home. Diabetes Obes Metabol 18(7):671–677. https://doi.org/10.1111/dom.12663

    Article  CAS  Google Scholar 

  48. Abitbol A, Rabasa-Lhoret R, Messier V, Legault L, Smaoui M, Cohen N et al (2018) Overnight glucose control with dual- and single-hormone artificial pancreas in type 1 diabetes with hypoglycemia unawareness: a randomized controlled trial. Diabetes Technol Ther 20:189–196

    Article  CAS  Google Scholar 

  49. Lal RA, Basina M, Maahs DM, Hood K, Buckingham B, Wilson DM (2019) One year clinical experience of the first commercial hybrid closed-loop system. Diabetes Care 42:2190–2196

    Article  Google Scholar 

  50. DuBose SN, Bauza C, Verdejo A, Beck RW, Bergenstal RM, Sherr J (2021) Real-world, patient-reported and clinic data from individuals with type 1 diabetes using the minimed 670g hybrid closed-loop system. Diabetes Technol Ther 23:791–798

    Article  Google Scholar 

  51. Collyns OJ, Meier RA, Betts ZL, Chan DSH, Frampton C, Frewen CM et al (2021) Improved glycemic outcomes with medtronic minimed advanced hybrid closed-loop delivery: results from a randomized crossover trial comparing automated insulin delivery with predictive low glucose suspend in people with type 1 diabetes. Diabetes Care 44:969–975

    Article  CAS  Google Scholar 

  52. Carlson AL, Sherr JL, Shulman DI, Garg SK, Pop-Busui R, Bode BW, et al. Safety and glycemic outcomes during the minimed™ advanced hybrid closed-loop system pivotal trial in adolescents and adults with type 1 diabetes. Diabetes Technol Ther 2021 Nov 16 Online ahead of print

  53. Bergenstal RM, Nimri R, Beck RW, Criego A, Laffel L, Schatz D et al (2021) A comparison of two hybrid closed-loop systems in adolescents and young adults with type 1 diabetes (FLAIR): a multicentre, randomised, crossover trial. Lancet 397:208–219

    Article  CAS  Google Scholar 

  54. Hood KK, Laffel LM, Danne T, Nimri R, Weinzimer SA, Sibayan J et al (2021) Lived experience of advanced hybrid closed-loop versus hybrid closed-loop: patient-reported outcomes and perspectives. Diabetes Technol Ther 23:857–861

    Article  Google Scholar 

  55. Brown SA, Kovatchev BP, Raghinaru D, Lum JW, Buckingham BA, Kudva YC et al (2019) Six-month randomized, multicenter trial of closed-loop control in type 1 diabetes. N Engl J Med 381:1707–1717

    Article  CAS  Google Scholar 

  56. Isganaitis E, Raghinaru D, Ambler-Osborn L, Pinsker JE, Buckingham BA, Wadwa RP et al (2021) closed-loop insulin therapy improves glycemic control in adolescents and young adults: outcomes from the international diabetes closed-loop trial. Diabetes Technol Ther 23:342–349

    Article  CAS  Google Scholar 

  57. Kudva YC, Laffel LM, Brown SA, Raghinaru D, Pinsker JE, Ekhlaspour L et al (2021) Patient-reported outcomes in a randomized trial of closed-loop control: the pivotal international diabetes closed-loop trial. Diabetes Technol Ther 23:673–683

    Article  Google Scholar 

  58. Brown SA, Beck RW, Raghinaru D, Buckingham BA, Laffel LM, Wadwa RP et al (2020) glycemic outcomes of use of CLC versus plgs in type 1 diabetes: a randomized controlled trial. Diabetes Care 43:1822–1828

    Article  Google Scholar 

  59. Breton MD, Kovatchev BP (2021) One year real-world use of the control-iq advanced hybrid closed-loop technology. Diabetes Technol Ther 23:601–608

    Article  CAS  Google Scholar 

  60. Breton MD, Kanapka LG, Beck RW, Ekhlaspour L, Forlenza GP, Cengiz E et al (2020) A randomized trial of closed-loop control in children with type 1 diabetes. N Engl J Med 383:836–845

    Article  CAS  Google Scholar 

  61. Kanapka LG, Wadwa RP, Breton MD, Ruedy KJ, Ekhlaspour L, Forlenza GP et al (2021) extended use of the control-IQ closed-loop control system in children with type 1 diabetes. Diabetes Care 44:473–478

    Article  CAS  Google Scholar 

  62. Renard E, Tubiana‐Rufi N, Bonnemaison E, Coutant R, Dalla‐Vale F, Bismuth E (2021) Outcomes of hybrid closed‐loop insulin delivery activated 24/7 versus evening and night in free‐living prepubertal children with type 1 diabetes: A multicentre, randomized clinical trial. Obes Metabol 24(3):511–521. https://doi.org/10.1111/dom.14605

    Article  CAS  Google Scholar 

  63. Bally L, Thabit H, Kojzar H, Mader JK, Qerimi-Hyseni J, Hartnell S et al (2017) Day-and-night glycaemic control with closed-loop insulin delivery versus conventional insulin pump therapy in free-living adults with well controlled type 1 diabetes: an open-label, randomised, crossover study. Lancet Diabetes Endocrinol 5:261–270

    Article  Google Scholar 

  64. Tauschmann M, Thabit H, Bally L, Allen JM, Hartnell S, Wilinska ME et al (2018) Closed-loop insulin delivery in suboptimally controlled type 1 diabetes: a multicentre, 12-week randomised trial. Lancet 392:1321–1329

    Article  CAS  Google Scholar 

  65. Tauschmann M, Allen JM, Nagl K, Fritsch M, Yong J, Metcalfe E et al (2019) Home use of day-and-night hybrid closed-loop insulin delivery in very young children: a multicenter, 3-week. Random Trial Diabete Care 42:594–600

    Article  CAS  Google Scholar 

  66. Ware J, Allen JM, Boughton CK, Wilinska ME, Hartnell S, Thankamony A et al (2022) Randomized trial of closed-loop control in very young children with type 1 diabetes. N Engl J Med 386:209–219

    Article  CAS  Google Scholar 

  67. Benhamou PY, Franc S, Reznik Y, Thivolet C, Schaepelynck P, Renard E et al (2019) Closed-loop insulin delivery in adults with type 1 diabetes in real-life conditions: a 12-week multicentre, open-label randomised controlled crossover trial. Lancet Digit Health 1:e17–e25

    Article  Google Scholar 

  68. Franc S, Benhamou PY, Borot S, Chaillous L, Delemer B, Doron M et al (2021) No more hypoglycaemia on days with physical activity and unrestricted diet when using a closed-loop system for 12 weeks: a post hoc secondary analysis of the multicentre, randomized controlled diabeloop WP7 trial. Diabetes Obes Metab 23:2170–2176

    Article  CAS  Google Scholar 

  69. Hanaire H, Franc S, Borot S, Penfornis A, Benhamou PY, Schaepelynck P et al (2020) Efficacy of the diabeloop closed-loop system to improve glycaemic control in patients with type 1 diabetes exposed to gastronomic dinners or to sustained physical exercise. Diabetes Obes Metab 22:324–334

    Article  CAS  Google Scholar 

  70. Amadou C, Franc S, Benhamou PY, Lablanche S, Huneker E, Charpentier G et al (2021) Diabeloop DBLG1 closed-loop system enables patients with type 1 diabetes to significantly improve their glycemic control in real-life situations without serious adverse events: 6-month follow-up. Diabetes Care 44:844–846

    Article  Google Scholar 

  71. Thabit H, Hovorka R (2016) Coming of age: the artificial pancreas for type 1 diabetes. Diabetologia 59:1795–1805

    Article  CAS  Google Scholar 

  72. Bekiari E, Kitsios K, Thabit H, Tauschmann M, Athanasiadou E, Karagiannis T et al (2018) Artificial pancreas treatment for outpatients with type 1 diabetes: systematic review and meta-analysis. BMJ 361:k1310

    Article  Google Scholar 

  73. Bode B, Carlson A, Liu R, Hardy T, Bergenstal R, Boyd J et al (2021) Ultrarapid lispro demonstrates similar time in target range to lispro with a hybrid closed-loop system. Diabetes Technol Ther 23:828–836

    Article  CAS  Google Scholar 

  74. Boughton CK, Hartnell S, Thabit H, Poettler T, Herzig D, Wilinska ME et al (2021) Hybrid closed-loop glucose control with faster insulin aspart compared with standard insulin aspart in adults with type 1 diabetes: a double-blind, multicentre, multinational, randomized, crossover study. Diabetes Obes Metab 23:1389–1396

    Article  CAS  Google Scholar 

  75. Garcia-Tirado J, Diaz JL, Esquivel-Zuniga R, Koravi CLK, Corbett JP, Dawson M, et al. Advanced Closed-Loop Control System Improves Postprandial Glycemic Control Compared With a Hybrid Closed-Loop System Following Unannounced Meal. Diabetes Care. 2021; dc210932. Online ahead of print.

  76. Brown SA, Forlenza GP, Bode BW, Pinsker JE, Levy CJ, Criego AB et al (2021) Multicenter Trial of a Tubeless, On-Body Automated Insulin Delivery System With Customizable Glycemic Targets in Pediatric and Adult Participants With Type 1 Diabetes. Diabetes Care 44:1630–1640

    Article  CAS  Google Scholar 

  77. Levitsky LL (2022) Reducing Caretaker Burden, Protecting Young Brains and Bodies. N Engl J Med 386:285–286

    Article  Google Scholar 

  78. Dassau E, Renard E, Place J, Farret A, Pelletier MJ, Lee J et al (2017) Intraperitoneal insulin delivery provides superior glycaemic regulation to subcutaneous insulin delivery in model predictive control-based fully-automated artificial pancreas in patients with type 1 diabetes: a pilot study. Diabetes Obes Metab 19:1698–1705

    Article  CAS  Google Scholar 

  79. Barnard KD, Wysocki T, Thabit H, Evans ML, Amiel S, Heller S, Young A, Hovorka R (2015) Psychosocial aspects of closed- and open-loop insulin delivery: closing the loop in adults with Type 1 diabetes in the home setting. Diabet Med 32(5):601–608. https://doi.org/10.1111/dme.12706

    Article  CAS  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Eric Renard.

Ethics declarations

Conflict of interest

The author reports serving on advisory boards for Abbott, Dexcom Inc, Insulet, Sanofi, Roche Diabetes Care, Novo Nordisk and Eli Lilly, and received research support from Dexcom Inc and Tandem.

Ethical approval

Not applicable.

Informed consent

Not applicable.

Additional information

Managed by Tadej Battelino.

Publisher's Note

Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Renard, E. Automated insulin delivery systems: from early research to routine care of type 1 diabetes. Acta Diabetol 60, 151–161 (2023). https://doi.org/10.1007/s00592-022-01929-5

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s00592-022-01929-5

Keywords

Navigation