Skip to main content

Advertisement

Log in

Human placenta mesenchymal stem cell-derived exosome shuttling microRNA-130b-3p from gestational diabetes mellitus patients targets ICAM-1 and perturbs human umbilical vein endothelial cell angiogenesis

  • Original Article
  • Published:
Acta Diabetologica Aims and scope Submit manuscript

Abstract

Objective

The aim of this study was to investigate the roles of miR-130b-3p and ICAM-1 in gestational diabetes mellitus (GDM) and their potential association.

Methods

Human placenta mesenchymal stem cells (PlaMSCs) were isolated from GDM patients, and the effects of the PlaMSCs from GDM patients (GDM-MSCs) and the exosomes secreted by GDM-MSCs on human umbilical vein endothelial cell (HUVEC) proliferation, migration, and angiogenesis were detected. Next, GDM-MSCs were transfected with miR-130b-3p antagomir to modify miR-130b-3p expression in GDM-MSCs-derived exosomes, and the exosomes with modified miR-130b-3p expression were cultured with HUVECs to evaluate exosomal miR-130b-3p on HUVEC function. Furthermore, a target gene of miR-130b-3p was predicted and assessed. The miR-130b-3p-modified exosomes were cultured with HUVECs transfected with ICAM-1 shRNA to determine the effect of miR-130b-3p-ICAM-1 crosstalk on HUVEC function. Additionally, a GDM mouse model was conducted to further study the effect of miR-130b-3p in GDM in vivo.

Results

GDM-MSCs inhibited HUVEC proliferation and angiogenesis. The elevated expression of miR-130b-3p was found in GDM-MSCs-derived exosomes. GDM-MSCs-derived exosomes repressed the proliferation and angiogenesis of HUVECs and miR-130b-3p inhibition could restrain the inhibition of the exosomes on HUVEC function. Mechanistically, miR-130b-3p downregulated ICAM-1 expression in a targeted manner, and thereby enhanced HUVEC proliferation, migration, and angiogenesis and increased the expression of angiogenesis-related factors. Moreover, miR-130b-3p inhibition promoted placental angiogenesis in GDM mice and upregulated ICAM-1 expression.

Conclusion

Conclusively, GDM-MSCs-derived exosomes shuttling miR-130b-3p repressed proliferation, migration, and angiogenesis of HUVECs by regulating ICAM-1 expression.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6
Fig. 7
Fig. 8

Similar content being viewed by others

Availability of data and materials

The datasets used or analyzed during the current study are available from the corresponding author on reasonable request.

References

  1. Chiefari E et al (2017) Gestational diabetes mellitus: an updated overview. J Endocrinol Invest 40(9):899–909

    Article  CAS  PubMed  Google Scholar 

  2. Casagrande SS et al (2018) Prevalence of gestational diabetes and subsequent Type 2 diabetes among U.S. women. Diabetes Res Clin Pract 141:200–208

    Article  PubMed  Google Scholar 

  3. Johns EC et al (2018) Gestational diabetes mellitus: mechanisms, treatment, and complications. Trends Endocrinol Metab 29(11):743–754

    Article  CAS  PubMed  Google Scholar 

  4. McElwain CJ et al (2020) Mechanisms of endothelial dysfunction in pre-eclampsia and gestational diabetes mellitus: windows into future cardiometabolic health? Front Endocrinol (Lausanne) 11:655

    Article  Google Scholar 

  5. Schiano C et al (2020) Non-nutritional sweeteners effects on endothelial vascular function. Toxicol In Vitro 62:104694

    Article  PubMed  Google Scholar 

  6. Valencia-Quintana R et al (2022) miRNAs: a potentially valuable tool in pesticide toxicology assessment-current experimental and epidemiological data review. Chemosphere 295:133792

    Article  CAS  PubMed  Google Scholar 

  7. Liu C et al (2021) Mitochondrial dysfunction contributes to aging-related atrial fibrillation. Oxid Med Cell Longev 2021:5530293

    PubMed  PubMed Central  Google Scholar 

  8. Zheng H et al (2022) MicroRNA-195-5p facilitates endothelial dysfunction by inhibiting vascular endothelial growth factor A in gestational diabetes mellitus. Reprod Biol 22(1):100605

    Article  PubMed  Google Scholar 

  9. Hromadnikova I et al (2020) Diabetes mellitus and cardiovascular risk assessment in mothers with a history of gestational diabetes mellitus based on postpartal expression profile of micrornas associated with diabetes mellitus and cardiovascular and cerebrovascular diseases. Int J Mol Sci 21(7):2437

    Article  CAS  PubMed Central  Google Scholar 

  10. Tryggestad JB et al (2016) Influence of gestational diabetes mellitus on human umbilical vein endothelial cell miRNA. Clin Sci (Lond) 130(21):1955–1967

    Article  CAS  Google Scholar 

  11. He C et al (2018) Exosome theranostics: Biology and translational medicine. Theranostics 8(1):237–255

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  12. Yu B et al (2014) Exosomes derived from mesenchymal stem cells. Int J Mol Sci 15(3):4142–4157

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  13. Komaki M et al (2017) Exosomes of human placenta-derived mesenchymal stem cells stimulate angiogenesis. Stem Cell Res Ther 8(1):219

    Article  PubMed  PubMed Central  Google Scholar 

  14. Huang Y et al (2021) Exosomal circular RNA circ_0074673 regulates the proliferation, migration, and angiogenesis of human umbilical vein endothelial cells via the microRNA-1200/MEOX2 axis. Bioengineered 12(1):6782–6792

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  15. Yang X et al (2022) MicroRNAs and exosomal micrornas may be possible targets to investigate in gestational diabetes mellitus. Diabetes Metab Syndr Obes 15:321–330

    Article  PubMed  PubMed Central  Google Scholar 

  16. Yan W et al (2021) Exosomal miR-130b-3p promotes progression and tubular formation through targeting PTEN in oral squamous cell carcinoma. Front Cell Dev Biol 9:616306

    Article  PubMed  PubMed Central  Google Scholar 

  17. Guo P et al (2016) ICAM-1-Targeted, Lcn2 siRNA-encapsulating liposomes are potent anti-angiogenic agents for triple negative breast cancer. Theranostics 6(1):1–13

    Article  PubMed  PubMed Central  Google Scholar 

  18. Diaz-Perez FI et al (2016) Post-transcriptional down regulation of ICAM-1 in feto-placental endothelium in GDM. Cell Adh Migr 10(1–2):18–27

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  19. Tooi M et al (2016) Placenta mesenchymal stem cell derived exosomes confer plasticity on fibroblasts. J Cell Biochem 117(7):1658–1670

    Article  CAS  PubMed  Google Scholar 

  20. Fan X et al (2014) Endometrial VEGF induces placental sFLT1 and leads to pregnancy complications. J Clin Invest 124(11):4941–4952

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  21. Neres R et al (2008) Pregnancy outcome and placenta pathology in Plasmodium berghei ANKA infected mice reproduce the pathogenesis of severe malaria in pregnant women. PLoS ONE 3(2):e1608

    Article  PubMed  PubMed Central  Google Scholar 

  22. Wang Z et al (2012) Cadmium-induced teratogenicity: association with ROS-mediated endoplasmic reticulum stress in placenta. Toxicol Appl Pharmacol 259(2):236–247

    Article  CAS  PubMed  Google Scholar 

  23. Xiong YW et al (2021) Environmental exposure to cadmium impairs fetal growth and placental angiogenesis via GCN-2-mediated mitochondrial stress. J Hazard Mater 401:123438

    Article  CAS  PubMed  Google Scholar 

  24. Xiong YW et al (2020) Maternal cadmium exposure during late pregnancy causes fetal growth restriction via inhibiting placental progesterone synthesis. Ecotoxicol Environ Saf 187:109879

    Article  CAS  PubMed  Google Scholar 

  25. Getahun D et al. (2010) Gestational diabetes: risk of recurrence in subsequent pregnancies. Am J Obstet Gynecol 203(5): 467 e1–e6

  26. Saez T et al (2018) Is there a role for exosomes in foetoplacental endothelial dysfunction in gestational diabetes mellitus? Placenta 61:48–54

    Article  CAS  PubMed  Google Scholar 

  27. Chen Y et al (2021) Non-invasive detection of fetal vascular endothelial function in gestational diabetes mellitus. Front Endocrinol (Lausanne) 12:763683

    Article  Google Scholar 

  28. Chen L et al (2020) Chorionic and amniotic placental membrane-derived stem cells, from gestational diabetic women, have distinct insulin secreting cell differentiation capacities. J Tissue Eng Regen Med 14(2):243–256

    Article  CAS  PubMed  Google Scholar 

  29. Ma H et al (2021) Conditioned medium from primary cytotrophoblasts, primary placenta-derived mesenchymal stem cells, or sub-cultured placental tissue promoted HUVEC angiogenesis in vitro. Stem Cell Res Ther 12(1):141

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  30. Pan J et al (2019) MSCs inhibits the angiogenesis of HUVECs through the miR-211/Prox1 pathway. J Biochem 166(1):107–113

    Article  CAS  PubMed  Google Scholar 

  31. Silva L et al (2017) Insulin/adenosine axis linked signalling. Mol Aspects Med 55:45–61

    Article  CAS  PubMed  Google Scholar 

  32. Sultan SA et al (2015) The role of maternal gestational diabetes in inducing fetal endothelial dysfunction. J Cell Physiol 230(11):2695–2705

    Article  CAS  PubMed  Google Scholar 

  33. Van Linthout S et al (2017) Placenta-derived adherent stromal cells improve diabetes mellitus-associated left ventricular diastolic performance. Stem Cells Transl Med 6(12):2135–2145

    Article  PubMed  PubMed Central  Google Scholar 

  34. Jiang S et al (2017) Role of microRNA-130b in placental PGC-1alpha/TFAM mitochondrial biogenesis pathway. Biochem Biophys Res Commun 487(3):607–612

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  35. Chen J et al (2021) Endocan: a key player of cardiovascular disease. Front Cardiovasc Med 8:798699

    Article  CAS  PubMed  Google Scholar 

  36. Turan M et al (2022) Immunoreactivity of ICAM-1, MMP-2, and Nesfatin-1 in lens epithelial cells of patients with diabetes mellitus with or without diabetic retinopathy. Eur J Ophthalmol 32(1):255–262

    Article  PubMed  Google Scholar 

  37. Zheng Y et al (2021) Crocetin suppresses gestational diabetes in streptozotocin-induced diabetes mellitus rats via suppression of inflammatory reaction. J Food Biochem 45(9):e13857

    CAS  PubMed  Google Scholar 

  38. Kurt M et al (2010) Expression of intercellular adhesion molecule-1 in umbilical and placental vascular tissue of gestational diabetic and normal pregnancies. Arch Gynecol Obstet 281(1):71–76

    Article  CAS  PubMed  Google Scholar 

  39. Tang G et al (2021) Clinical efficacies, underlying mechanisms and molecular targets of Chinese medicines for diabetic nephropathy treatment and management. Acta Pharm Sin B 11(9):2749–2767

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  40. Szilagyi B et al (2021) Platelet microparticles enriched in miR-223 reduce ICAM-1-dependent vascular inflammation in septic conditions. Front Physiol 12:658524

    Article  PubMed  PubMed Central  Google Scholar 

Download references

Acknowledgements

Not applicable.

Funding

Thanks for the grant from the General Project of Natural Science Foundation of Hunan Province (Grant No. 2021JJ31024).

Author information

Authors and Affiliations

Authors

Contributions

GZ and WN contributed equally to the manuscript, GZ, WN, and LXL had full access to all of the data in the study and takes responsibility for the integrity of the data, the accuracy of the data analysis, GZ, WN, and LXL wrote the manuscript draft. GZ, WN, and LXL performed research. GZ and WN contributed substantially to the study design and the writing of the manuscript. GZ, WN, and LXL contributed to the manuscript preparation and statistical analysis. All authors read and approved the final version of the manuscript.

Corresponding author

Correspondence to Xinli Liu.

Ethics declarations

Conflict of interest

The author declares no competing financial interests.

Ethics approval

This work was authorized by The Third Xiangya Hospital of Central South University, and written informed consent was collected from all participants.

Consent to participate

Informed consent to participate in the study was obtained from participants.

Additional information

Publisher's Note

Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

This article belongs to the topical collection Pregnancy and Diabetes, managed by Antonio Secchi and Marina Scavini.

Supplementary Information

Below is the link to the electronic supplementary material.

592_2022_1910_MOESM1_ESM.tif

Supplementary file1 The expression of exosome markers CD9, CD63, and a endoplasmic reticulum maker Calnexin in the isolated exosomes was detected by western blot. Notes: A, CD9 expression was measured by western blot. B, CD63 expression was tested by western blot. C, Calnexin expression was evaluated by western blot. In addition to Marker, the bands from left to right in the figures sequentially represents the CON-MSCs, GDM -MSCs, CON-PdEs, GDM-PdEs, and CON-PdEs and GDM-PdEs isolated after GW4869 addition. CON-PdEs, exosomes derived by CON-MSCs; GDM-PdEs, exosomes derived by GDM-MSCs; CON-MSCs, PlaMSC from healthy volunteers; GDM-MSCs, PlaMSCs from GDM patients; GDM, gestational diabetes mellitus; PlaMSCs, mesenchymal stem cells from placenta (TIF 54838 kb)

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Gao, Z., Wang, N. & Liu, X. Human placenta mesenchymal stem cell-derived exosome shuttling microRNA-130b-3p from gestational diabetes mellitus patients targets ICAM-1 and perturbs human umbilical vein endothelial cell angiogenesis. Acta Diabetol 59, 1091–1107 (2022). https://doi.org/10.1007/s00592-022-01910-2

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s00592-022-01910-2

Keywords

Navigation