Skip to main content

Advertisement

Log in

Serum metabolic signatures of subclinical atherosclerosis in patients with type 2 diabetes mellitus: a preliminary study

  • Original Article
  • Published:
Acta Diabetologica Aims and scope Submit manuscript

Abstract

Aims

Atherosclerotic cardiovascular disease remains the leading cause of death among patients with diabetes. Early identification of subclinical atherosclerosis is essential for the management of diabetic patients. This study aimed to characterize serum metabolic signatures associated with carotid intima-media thickness (C-IMT), a proxy of subclinical atherosclerosis, in patients with type 2 diabetes mellitus (T2DM).

Methods

After 1:1 matching by sex, age, body mass index, glycated haemoglobin A1c, and other clinical parameters, a total of 462 T2DM patients were enrolled, consisting of 231 patients with C-IMT of ≥ 1 mm (abnormal C-IMT) and 231 patients with C-IMT of < 1 mm (normal C-IMT). C-IMT was assessed using ultrasonography. The serum metabolic profiling of fasting blood samples was performed using liquid chromatography-tandem triple quadrupole mass spectrometer coupled with the multivariate and univariate statistical analysis.

Results

Patients with abnormal C-IMT had significantly higher deoxycholic acid (DCA) and taurodeoxycholic acid (TDCA) levels, and lower levels of taurocholic acid (TCA) than those with normal C-IMT. Conditional logistic regression analysis revealed that per 1-standard deviation increase of DCA, TDCA and TCA were significantly associated with 64.7% (95% CI: 1.234–2.196) and 38.5% (95% CI: 1.124–1.706) higher, and 26.8% (95% CI: 0.597–0.897) lower risk of abnormal C-IMT, after adjustment of confounders. The addition of DCA, TCA, or DCA × TDCA/TCA ratio significantly improved the discrimination of abnormal C-IMT over traditional risk factors.

Conclusions

Serum bile acids may be potential biomarkers for subclinical atherosclerosis in T2DM patients, which needs further confirmation.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2

Similar content being viewed by others

Availability of data and materials

The datasets used and/or analysed during the current study are not publicly available due to the individual privacy of the patients included in this study, but are available from the corresponding author on reasonable request.

Code availability

Not applicable.

Abbreviations

ASCVD:

Atherosclerotic cardiovascular disease

AUC:

Areas under the curves

BMI:

Body mass index

CAD:

Coronary artery disease

C-IMT:

Carotid intima-media thickness

DBP:

Diastolic blood pressure

DCA:

Deoxycholic acid

EDC·HCl:

N-Ethyl-N’-(3-dimethylaminopropyl) carbodiimide hydrochloride

FC:

Fold change

FXR:

Farnesoid X receptor

HbA1c :

Glycated haemoglobin A1c

HDL-c:

High-density lipoprotein cholesterol

IMT:

Intima-media thickness

LC-TQMS:

Liquid chromatography-tandem triple quadrupole mass spectrometer

LDL-c:

Low-density lipoprotein cholesterol

OPLS-DA:

Orthogonal partial least squares-discriminant analysis

ROC:

Receiver operating characteristic

SBP:

Systolic blood pressure

SD:

Standard deviation

T2DM:

Type 2 diabetes mellitus

TC:

Total cholesterol

TCA:

Taurocholic acid

TDCA:

Taurodeoxycholic acid

TG:

Triglyceride

TGR5:

Takeda G protein-coupled receptor 5

VIP:

Variable importance in the projection

References

  1. Grundy SM, Stone NJ, Bailey AL, Beam C, Birtcher KK, Blumenthal RS et al (2019) 2018 AHA/ACC/AACVPR/AAPA/ABC/ACPM/ADA/AGS/APhA/ASPC/NLA/PCNA Guideline on the management of blood cholesterol: a report of the American college of cardiology/American heart association task force on clinical practice guidelines. J Am Coll Cardiol 73(24):e285–e350. https://doi.org/10.1016/j.jacc.2018.11.003

    Article  PubMed  Google Scholar 

  2. Low Wang CC, Hess CN, Hiatt WR, Goldfine AB (2016) Clinical update: cardiovascular disease in diabetes mellitus: atherosclerotic cardiovascular disease and heart failure in type 2 diabetes mellitus-mechanisms, management, and clinical considerations. Circulation 133(24):2459–2502. https://doi.org/10.1161/CIRCULATIONAHA.116.022194

    Article  CAS  Google Scholar 

  3. Lee CH, Lee SW, Park SW (2018) Diabetes and subclinical coronary atherosclerosis. Diabetes Metab J 42(5):355–363. https://doi.org/10.4093/dmj.2018.0041

    Article  PubMed  PubMed Central  Google Scholar 

  4. Touboul PJ, Hennerici MG, Meairs S, Adams H, Amarenco P, Desvarieux M et al (2004) Mannheim intima-media thickness consensus. Cerebrovasc Dis 18(4):346–349. https://doi.org/10.1159/000081812

    Article  PubMed  Google Scholar 

  5. Polak JF, O’Leary DH (2016) Carotid intima-media thickness as surrogate for and predictor of CVD. Glob Heart 11(3):295-312.e3. https://doi.org/10.1016/j.gheart.2016.08.006

    Article  PubMed  Google Scholar 

  6. Chambless LE, Folsom AR, Clegg LX, Sharrett AR, Shahar E, Nieto FJ et al (2000) Carotid wall thickness is predictive of incident clinical stroke: the atherosclerosis risk in communities (ARIC) study. Am J Epidemiol 151(5):478–487. https://doi.org/10.1093/oxfordjournals.aje.a010233

    Article  CAS  PubMed  Google Scholar 

  7. Chambless LE, Heiss G, Folsom AR, Rosamond W, Szklo M, Sharrett AR et al (1997) Association of coronary heart disease incidence with carotid arterial wall thickness and major risk factors: the atherosclerosis risk in communities (ARIC) study, 1987–1993. Am J Epidemiol 146(6):483–494. https://doi.org/10.1093/oxfordjournals.aje.a009302

    Article  CAS  PubMed  Google Scholar 

  8. Johnson CH, Ivanisevic J, Siuzdak G (2016) Metabolomics: beyond biomarkers and towards mechanisms. Nat Rev Mol Cell Biol 17(7):451–459. https://doi.org/10.1038/nrm.2016.25

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  9. Wu T, Qiao S, Shi C, Wang S, Ji G (2018) Metabolomics window into diabetic complications. J Diabetes Investig 9(2):244–255. https://doi.org/10.1111/jdi.12723

    Article  PubMed  Google Scholar 

  10. Omori K, Katakami N, Arakawa S, Yamamoto Y, Ninomiya H, Takahara M et al (2020) Identification of plasma inositol and indoxyl sulfate as novel biomarker candidates for atherosclerosis in patients with type 2 diabetes.-Findings from metabolome analysis using GC/MS. J Atheroscler Thromb 27(10):1053–1067. https://doi.org/10.5551/jat.52506

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  11. Katakami N, Omori K, Taya N, Arakawa S, Takahara M, Matsuoka TA et al (2020) Plasma metabolites associated with arterial stiffness in patients with type 2 diabetes. Cardiovasc Diabetol 19(1):75. https://doi.org/10.1186/s12933-020-01057-w

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  12. American Diabetes Association (2010) Standards of medical care in diabetes—2010. Diabetes Care 33(Suppl 1):S11–S61. https://doi.org/10.2337/dc10-S011

    Article  CAS  PubMed Central  Google Scholar 

  13. Yang G, Fan L, Tan J, Qi G, Zhang Y, Samet JM et al (1999) Smoking in China: findings of the 1996 national prevalence survey. JAMA 282(13):1247–1253. https://doi.org/10.1001/jama.282.13.1247

    Article  CAS  PubMed  Google Scholar 

  14. He X, Su J, Ma X, Lu W, Zhu W, Wang Y et al (2020) The association between serum growth differentiation factor 15 levels and lower extremity atherosclerotic disease is independent of body mass index in type 2 diabetes. Cardiovasc Diabetol 19(1):40. https://doi.org/10.1186/s12933-020-01020-9

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  15. Han J, Lin K, Sequeira C, Borchers CH (2015) An isotope-labeled chemical derivatization method for the quantitation of short-chain fatty acids in human feces by liquid chromatography-tandem mass spectrometry. Anal Chim Acta 854:86–94. https://doi.org/10.1016/j.aca.2014.11.015

    Article  CAS  PubMed  Google Scholar 

  16. Liang D, Liu Q, Zhou K, Jia W, Xie G, Chen T (2020) IP4M: an integrated platform for mass spectrometry-based metabolomics data mining. BMC Bioinform 21(1):444. https://doi.org/10.1186/s12859-020-03786-x

    Article  CAS  Google Scholar 

  17. Ahmad TR, Haeusler RA (2019) Bile acids in glucose metabolism and insulin signalling-mechanisms and research needs. Nat Rev Endocrinol 15(12):701–712. https://doi.org/10.1038/s41574-019-0266-7

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  18. Jia W, Wei M, Rajani C, Zheng X (2020) Targeting the alternative bile acid synthetic pathway for metabolic diseases. Protein Cell. https://doi.org/10.1007/s13238-020-00804-9

    Article  PubMed  PubMed Central  Google Scholar 

  19. Zheng X, Chen T, Jiang R, Zhao A, Wu Q, Kuang J et al (2021) Hyocholic acid species improve glucose homeostasis through a distinct TGR5 and FXR signaling mechanism. Cell Metab 33(4):791–803.e7. https://doi.org/10.1016/j.cmet.2020.11.017

    Article  CAS  Google Scholar 

  20. Chávez-Talavera O, Tailleux A, Lefebvre P, Staels B (2017) Bile acid control of metabolism and inflammation in obesity, type 2 diabetes, dyslipidemia, and nonalcoholic fatty liver disease. Gastroenterology 152(7):1679-1694.e3. https://doi.org/10.1053/j.gastro.2017.01.055

    Article  CAS  PubMed  Google Scholar 

  21. Jadhav K, Xu Y, Xu Y, Li Y, Xu J, Zhu Y et al (2018) Reversal of metabolic disorders by pharmacological activation of bile acid receptors TGR5 and FXR. Mol Metab 9:131–140. https://doi.org/10.1016/j.molmet.2018.01.005

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  22. Jové M, Ayala V, Ramírez-Núñez O, Serrano JC, Cassanyé A, Arola L et al (2013) Lipidomic and metabolomic analysis reveal potential plasma biomarkers of early atheromatous plaque formation in hamsters. Cardiovasc Res 97(4):642–652. https://doi.org/10.1093/cvr/cvs368

    Article  CAS  PubMed  Google Scholar 

  23. Liu YT, Peng JB, Jia HM, Cai DY, Zhang HW, Yu CY et al (2014) UPLC-Q/TOF MS standardized Chinese formula Xin-Ke-Shu for the treatment of atherosclerosis in a rabbit model. Phytomedicine 21(11):1364–1372. https://doi.org/10.1016/j.phymed.2014.05.009

    Article  CAS  PubMed  Google Scholar 

  24. Jia P, Wang S, Xiao C, Yang L, Chen Y, Jiang W et al (2016) The anti-atherosclerotic effect of tanshinol borneol ester using fecal metabolomics based on liquid chromatography-mass spectrometry. Analyst 141(3):1112–1120. https://doi.org/10.1039/c5an01970b

    Article  CAS  PubMed  Google Scholar 

  25. Mayerhofer CCK, Ueland T, Broch K, Vincent RP, Cross GF, Dahl CP et al (2017) Increased secondary/primary bile acid ratio in chronic heart failure. J Card Fail 23(9):666–671. https://doi.org/10.1016/j.cardfail.2017.06.007

    Article  CAS  PubMed  Google Scholar 

  26. Fan Y, Li Y, Chen Y, Zhao YJ, Liu LW, Li J et al (2016) Comprehensive metabolomic characterization of coronary artery diseases. J Am Coll Cardiol 68(12):1281–1293. https://doi.org/10.1016/j.jacc.2016.06.044

    Article  PubMed  Google Scholar 

  27. Alonso A, Yu B, Sun YV, Chen LY, Loehr LR, O’Neal WT et al (2019) Serum metabolomics and incidence of atrial fibrillation (from the Atherosclerosis Risk in Communities Study). Am J Cardiol 123(12):1955–1961. https://doi.org/10.1016/j.amjcard.2019.03.017

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  28. de Aguiar Vallim TQ, Tarling EJ, Edwards PA (2013) Pleiotropic roles of bile acids in metabolism. Cell Metab 17(5):657–669. https://doi.org/10.1016/j.cmet.2013.03.013

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  29. Xu Y, Li F, Zalzala M, Xu J, Gonzalez FJ, Adorini L et al (2016) Farnesoid X receptor activation increases reverse cholesterol transport by modulating bile acid composition and cholesterol absorption in mice. Hepatology 64(4):1072–1085. https://doi.org/10.1002/hep.28712

    Article  CAS  PubMed  Google Scholar 

  30. Davidson MH, Voogt J, Luchoomun J, Decaris J, Killion S, Boban D et al (2013) Inhibition of intestinal cholesterol absorption with ezetimibe increases components of reverse cholesterol transport in humans. Atherosclerosis 230(2):322–329. https://doi.org/10.1016/j.atherosclerosis.2013.08.006

    Article  CAS  PubMed  Google Scholar 

  31. Jonsson AL, Bäckhed F (2017) Role of gut microbiota in atherosclerosis. Nat Rev Cardiol 14(2):79–87. https://doi.org/10.1038/nrcardio.2016.183

    Article  CAS  PubMed  Google Scholar 

  32. Jie Z, Xia H, Zhong SL, Feng Q, Li S, Liang S et al (2017) The gut microbiome in atherosclerotic cardiovascular disease. Nat Commun 8(1):845. https://doi.org/10.1038/s41467-017-00900-1

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  33. Cason CA, Dolan KT, Sharma G, Tao M, Kulkarni R, Helenowski IB et al (2018) Plasma microbiome-modulated indole- and phenyl-derived metabolites associate with advanced atherosclerosis and postoperative outcomes. J Vasc Surg 68(5):1552-1562.e7. https://doi.org/10.1016/j.jvs.2017.09.029

    Article  PubMed  Google Scholar 

  34. Kappel BA, De Angelis L, Heiser M, Ballanti M, Stoehr R, Goettsch C et al (2020) Cross-omics analysis revealed gut microbiome-related metabolic pathways underlying atherosclerosis development after antibiotics treatment. Mol Metab 36:100976. https://doi.org/10.1016/j.molmet.2020.100976

    Article  CAS  PubMed  PubMed Central  Google Scholar 

Download references

Acknowledgements

We are very grateful to all the staff for helping with the present study. We are grateful to all participants for their dedication to data collection and laboratory measurements.

Funding

This work was funded by Natural Science Foundation of Shanghai (17ZR1421300).

Author information

Authors and Affiliations

Authors

Contributions

XM and JL contributed to study design. JS contributed to data collection, data analysis, and writing the paper. QZ and AZ performed the data analysis and the LC-TQMS-based metabolomics. WZ contributed to the sample collection. AZ, WJ, JL, and XM revised the paper and contributed to the discussion. All authors read and approved the final manuscript.

Corresponding authors

Correspondence to Jingyi Lu or Xiaojing Ma.

Ethics declarations

Conflict of interest

The authors declare that they have no conflict of interest.

Ethical approval

This study was approved by the Ethics Committee of Shanghai Jiao Tong University Affiliated Sixth People’s Hospital and was in accordance with the 1964 Declaration of Helsinki and its later amendments or comparable ethical standards.

Informed consent

All participants provided written informed consent prior to their inclusion in the study.

Consent for publication

Not applicable.

Additional information

Managed By Massimo Federici.

Publisher's Note

Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Supplementary Information

Below is the link to the electronic supplementary material.

Supplementary file1 (DOCX 2170 kb)

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Su, J., Zhao, Q., Zhao, A. et al. Serum metabolic signatures of subclinical atherosclerosis in patients with type 2 diabetes mellitus: a preliminary study. Acta Diabetol 58, 1217–1224 (2021). https://doi.org/10.1007/s00592-021-01717-7

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s00592-021-01717-7

Keywords

Navigation