Skip to main content
Log in

Microbiota, epidemiological and nutritional factors related to ketoacidosis at the onset of type 1 diabetes

  • Original Article
  • Published:
Acta Diabetologica Aims and scope Submit manuscript

Abstract

Aims

The incidence of type 1 diabetes has increased over the last decades. The pathological pathway is not yet clear, even if genetic and environmental risk factors are known. An early diagnosis can avoid ketoacidosis and its complications. This work aims to discuss the determinants of both ketoacidosis at the onset and access by hospital emergency departments without a suspected diagnosis.

Methods

An observational bi-centric prospective study was conducted in Northern Italy, on a paediatric population including Italian and migrant patients at the diabetes onset. Seventy-four type 1 diabetes patients, both Italian and migrant, were included in the study. Anthropometric, socio-economic, behavioural, clinical data were collected, and microbiota analyses were performed using stool samples.

Results

Regular physical activity is associated with lower ketoacidosis incidence at onset (OR 0.33 95% CI 0.12–0.95 p < 0.05), as is higher blood vitamin D level (OR 0.92 95% CI 0.85–0.99 p < 0.05). Moreover, a higher weaning age (OR 0.49 95% CI 0.27–0.89 p < 0.05), higher vitamin D level (OR 0.90 95% CI 0.83–0.98 p < 0.05) and a higher level of Akkermansia muciniphila (OR 0.46 95% CI 0.25–0.87 p < 0.05) are associated factors to lower frequency of type 1 diabetes onset without a suspected diagnosis. Diabetes migrant status is not a risk factor for severe type 1 diabetes onset; on the other hand, some protective factors are significantly more diffused among Italians, such as regular sport activity and non-critical vitamin D levels.

Conclusion

Behavioural and nutritional data, such as microbiota bio-indicators, seem to be useful to identify an at-risk population to prevent ketoacidosis and its severe complications.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1

Similar content being viewed by others

References

  1. World Health Organization—Department for Management of Noncommunicable Diseases, Disability, Violence and Injury Prevention, Geneva, Switzerland (2019) Classification of diabetes mellitus 2019 https://www.who.int/health-topics/diabetes

  2. National Center for Chronic Disease Prevention and Health Promotion (2017) National Diabetes Statistics Report, 2017. Estimates of diabetes and its burden in the United States.

  3. Patterson CC, Harjutsalo V, Rosenbauer J et al (2019) Trends and cyclical variation in the incidence of childhood type 1 diabetes in 26 European centres in the 25 year period 1989–2013: a multicentre prospective registration study. Diabetologia 62:408–417. https://doi.org/10.1007/s00125-018-4763-3

    Article  PubMed  Google Scholar 

  4. Bruno G (2016) Il registro diabete Piemonte. Italian Health Policy Brief. Anno VI Speciale, pp. 1–8

  5. Atkinson MA, Eisenbarth GS, Michels AW (2014) Type 1 diabetes. Lancet 383:69–82. https://doi.org/10.1016/S0140-6736(13)60591-7

    Article  PubMed  Google Scholar 

  6. Dedrick S, Sundaresh B, Huang Q et al (2020) The role of gut microbiota and environmental factors in type 1 diabetes pathogenesis. Front Endocrinol (Lausanne) 11:1–20. https://doi.org/10.3389/fendo.2020.00078

    Article  Google Scholar 

  7. Knip M, Luopajärvi K, Härkönen T (2017) Early life origin of type 1 diabetes. Semin Immunopathol 39:653–667. https://doi.org/10.1007/s00281-017-0665-6

    Article  PubMed  CAS  Google Scholar 

  8. Park A, Zhao G (2018) Mining the Virome for Insights into Type 1 Diabetes. DNA Cell Biol 37:422–425. https://doi.org/10.1089/dna.2018.4185

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  9. Paschou SA, Papadopoulou-Marketou N, Chrousos GP, Kanaka-Gantenbein C (2018) On type 1 diabetes mellitus pathogenesis. Endocr Connect 7:R38–R46. https://doi.org/10.1530/EC-17-0347

    Article  PubMed  CAS  Google Scholar 

  10. Zipitis CS, Akobeng AK (2008) Vitamin D supplementation in early childhood and risk of type 1 diabetes: a systematic review and meta-analysis. Arch Dis Child 93:512–517

    Article  CAS  PubMed  Google Scholar 

  11. Feng R, Li Y, Li G et al (2015) Lower serum 25 (OH) D concentrations in type 1 diabetes: a meta-analysis. Diabetes Res Clin Pract 108:e71–e75. https://doi.org/10.1016/j.diabres.2014.12.008

    Article  PubMed  CAS  Google Scholar 

  12. Giri D, Pintus D, Burnside G et al (2017) Treating vitamin D deficiency in children with type 1 diabetes could improve their glycaemic control. BMC Res Notes. https://doi.org/10.1186/s13104-017-2794-3

    Article  PubMed  PubMed Central  Google Scholar 

  13. Rewers M, Ludvigsson J (2016) Environmental risk factors for type 1 diabetes. Lancet 387:2340–2348

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  14. Bizzarri C, Pitocco D, Napoli N et al (2010) No protective effect of calcitriol on β-cell function in recent-onset type 1 diabetes: the IMDIAB XIII trial. Diabetes Care 33:1962–1963. https://doi.org/10.2337/dc10-0814

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  15. Cashen K, Petersen T (2019) Diabetic ketoacidosis. Pediatr Rev 40:412–420. https://doi.org/10.1542/pir.2018-0231

    Article  PubMed  Google Scholar 

  16. Rabbone I, Maltoni G, Tinti D et al (2019) Diabetic ketoacidosis at the onset of disease during a national awareness campaign: a 2-year observational study in children aged 0–18 years. Arch Dis Child. https://doi.org/10.1136/archdischild-2019-316903

    Article  PubMed  Google Scholar 

  17. World Health Organization (2018) Template for Parental Consent-clinical studies 20, avenue Appia – CH-1211 Geneva 27 – Switzerland. http://www.who.int/ethics/review-committee

  18. Franzosa EA, Morgan XC, Segata N et al (2014) Relating the metatranscriptome and metagenome of the human gut. PNAS 111:E2329–E2338. https://doi.org/10.1073/pnas.1319284111

    Article  PubMed  CAS  PubMed Central  Google Scholar 

  19. IHMS Consortium (2015) IHMS-SOP 02 V2: Standard Operating Procedure for Fecal Samples Self ‐ Collection Laboratory Analysis Handled Within 4 To 24 Hour. http://www.microbiome-standards.org/index.php?id=289

  20. Wolfsdorf JI, Glaser N, Agus M et al (2018) ISPAD clinical practice consensus guidelines 2018: diabetic ketoacidosis and the hyperglycemic hyperosmolar state. Pediatr Diabetes 19:155–177. https://doi.org/10.1111/pedi.12701

    Article  PubMed  Google Scholar 

  21. Istituto Superiore di Sanità (2017) Sovrappeso e obesità infantile, i dati del Sistema di Sorveglianza OKkio alla Salute. http://www.salute.gov.it/portale/news/p3_2_1_1_1.jsp?lingua=italiano&menu=notizie&p=dalministero&id=2929

  22. Verduci E, Radaelli G, Stival G et al (2007) Dietary macronutrient intake during the first 10 years of life in a cohort of Italian children. J Pediatr Gastroenterol Nutr 45:90–95. https://doi.org/10.1097/MPG.0b013e318058ca4e

    Article  PubMed  CAS  Google Scholar 

  23. Meek RL, LeBoeuf RC, Saha SA et al (2013) Glomerular cell death and inflammation with high-protein diet and diabetes. Nephrol Dial Transplant 28:1711–1720. https://doi.org/10.1093/ndt/gfs579

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  24. Gunn ER, Albert BB, Hofman PL et al (2017) Pathways to reduce diabetic ketoacidosis with new onset type 1 diabetes: evidence from a regional pediatric diabetes center: Auckland, New Zealand, 2010 to 2014. Pediatr Diabetes 18:553–558. https://doi.org/10.1111/pedi.12456

    Article  PubMed  CAS  Google Scholar 

  25. Borgo F, Verduci E, Riva A et al (2017) Relative abundance in bacterial and fungal gut microbes in obese children: a case control study. Child Obes 13:78–84. https://doi.org/10.1089/chi.2015.0194

    Article  PubMed  Google Scholar 

  26. Szypowska A, Dżygało K, Wysocka-Mincewicz M et al (2017) High incidence of diabetic ketoacidosis at diagnosis of type 1 diabetes among polish children aged 10–12 and under 5 years of age: a multicenter study. Pediatr Diabetes 18:722–728. https://doi.org/10.1111/pedi.12446

    Article  PubMed  CAS  Google Scholar 

  27. Lee HJ, Yu HW, Jung HW et al (2017) Factors associated with the presence and severity of diabetic ketoacidosis at diagnosis of type 1 diabetes in korean children and adolescents. @bull J Korean Med Sci 32:303–309. https://doi.org/10.3346/jkms.2017.32.2.303

    Article  Google Scholar 

  28. Cherubini V, Skrami E, Ferrito L et al (2019) Exercise has the guts: How physical activity may positively modulate gut microbiota in chronic and immune-based diseases. Dig Liver Dis 62:1–4. https://doi.org/10.1007/s00125-018-4763-3

    Article  Google Scholar 

  29. Vecchio F, Lo BN, Stabilini A et al (2018) Abnormal neutrophil signature in the blood and pancreas of presymptomatic and symptomatic type 1 diabetes federica vecchio, …, the type 1 diabetes trialnet study group, manuela battaglia find the latest version : abnormal neutrophil signature in the bl. JCI Insight 3:1–17. https://doi.org/10.1172/JCI.INSIGHT.122146

    Article  Google Scholar 

  30. Muyzer G, Waal ECDE, Uitierlinden AG (1993) Profiling of complex microbial populations by denaturing gradient gel electrophoresis analysis of polymerase chain reaction-amplified genes coding for 16S rRNA. Applaied Environ Microbiol 59:695–700

    Article  CAS  Google Scholar 

  31. Vanhoutte T, Huys G, De Brandt E, Swings J (2004) Temporal stability analysis of the microbiota in human feces by denaturing gradient gel electrophoresis using universal and group-specific 16S rRNA gene primers. FEMS Microbiol Ecol 48:437–446. https://doi.org/10.1016/j.femsec.2004.03.001

    Article  PubMed  CAS  Google Scholar 

  32. Joossens M, Huys G, Van Steen K et al (2011) High-throughput method for comparative analysis of denaturing gradient gel electrophoresis profiles from human fecal samples reveals significant increases in two bifidobacterial species after inulin-type prebiotic intake. FEMS Microbiol Ecol 75:343–349. https://doi.org/10.1111/j.1574-6941.2010.01008.x

    Article  PubMed  CAS  Google Scholar 

  33. De Goffau MC, Luopajärvi K, Knip M et al (2013) Fecal microbiota composition differs between children with beta-cell autoimmunity and those without. Diabetes 62:1238–1244. https://doi.org/10.2337/db12-0526

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  34. Davis-Richardson AG, Ardissone AN, Dias R et al (2014) Bacteroides dorei dominates gut microbiome prior to autoimmunity in Finnish children at high risk for type 1 diabetes. Front Microbiol 5:1–11. https://doi.org/10.3389/fmicb.2014.00678

    Article  Google Scholar 

  35. Brown CT, Davis-Richardson AG, Giongo A et al (2011) Gut microbiome metagenomics analysis suggests a functional model for the development of autoimmunity for type 1 diabetes. PLoS ONE 6:1–9. https://doi.org/10.1371/journal.pone.0025792

    Article  CAS  Google Scholar 

  36. Ottman N, Reunanen J, Meijerink M et al (2017) Pili-like proteins of Akkermansia muciniphila modulate host immune responses and gut barrier function. PLoS ONE 12:1–18. https://doi.org/10.1371/journal.pone.0173004

    Article  CAS  Google Scholar 

  37. Cani PD (2018) Severe obesity and gut microbiota: does bariatric surgery really reset the system? Gut gutjnl-2018-316815. https://doi.org/10.1136/gutjnl-2018-316815

  38. Knight R, Vrbanac A, Taylor BC et al (2018) Best practices for analysing microbiomes. Nat Rev Microbiol. https://doi.org/10.1038/s41579-018-0029-9

    Article  PubMed  Google Scholar 

  39. Webster NS, Negri AP (2006) Site-specific variation in Antarctic marine biofilms established on artificial surfaces. Environ Microbiol 8:1177–1190. https://doi.org/10.1111/j.1462-2920.2006.01007.x

    Article  PubMed  CAS  Google Scholar 

  40. O’Sullivan LA, Webster G, Fry JC et al (2008) Modified linker-PCR primers facilitate complete sequencing of DGGE DNA fragments. J Microbiol Methods 75:579–581. https://doi.org/10.1016/j.mimet.2008.08.006

    Article  PubMed  CAS  Google Scholar 

  41. Dridi B, Henry M, El Khéchine A et al (2009) High prevalence of Methanobrevibacter smithii and Methanosphaera stadtmanae detected in the human gut using an improved DNA detection protocol. PLoS ONE 4:e7063. https://doi.org/10.1371/journal.pone.0007063

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  42. Guo X, Xia X, Tang R et al (2008) Development of a real-time PCR method for Firmicutes and Bacteroidetes in faeces and its application to quantify intestinal population of obese and lean pigs. Lett Appl Microbiol 47:367–373. https://doi.org/10.1111/j.1472-765X.2008.02408.x

    Article  PubMed  CAS  Google Scholar 

  43. Murri M, Leiva I, Gomez-zumaquero JM, et al (2013) Gut microbiota in children with type 1 diabetes differs from that in healthy children: a case-control study. BMC Med 11:46. http://www.biomedcentral.com/1741-7015/11/46

  44. Nakayama T, Oishi K (2013) Influence of coffee (Coffea arabica) and galacto-oligosaccharide consumption on intestinal microbiota and the host responses. FEMS microbial lett 343(2):161–168

    Article  CAS  Google Scholar 

  45. Matsuki T, Watanabe K, Fujimoto J et al (2004) Quantitative pcr with 16s primers for analysis of human intestinal bifidobacteria. Appl Environ Microbiol 70:167–173. https://doi.org/10.1128/AEM.70.1.167

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  46. Dao MC, Everard A, Aron-wisnewsky J et al (2016) Akkermansia muciniphila and improved metabolic health during a dietary intervention in obesity : relationship with gut microbiome richness and ecology. Gut microbiota 65:426–436. https://doi.org/10.1136/gutjnl-2014-308778

    Article  CAS  Google Scholar 

  47. Johnston C, Ufnar JA, Griffith JF et al (2010) A real-time qPCR assay for the detection of the nifH gene of Methanobrevibacter smithii, a potential indicator of sewage pollution. J Appl Microbiol 109:1946–1956. https://doi.org/10.1111/j.1365-2672.2010.04824.x

    Article  PubMed  CAS  Google Scholar 

Download references

Acknowledgements

The authors wish to thank the Italian Ministry of Health for funding (RF-2011-02350617), Dr. Barbara Di Stefano (Sanitary Direction AOU Novara), as well as Mrs. Rim Maatoug, Mrs. Shpresa Xheka and Mrs. Daniela Elena Zelinschi, cultural intermediaries at the Novara Hospital, for the translation of the questionnaire for migrant people. Finally, the authors especially acknowledge the participating children and their families.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Deborah Traversi.

Ethics declarations

Conflict of interest

The authors declare that they have no conflict of interest.

Additional information

Publisher's Note

Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

This article belongs to the topical collection Gut Microbiome and Metabolic Disorders, managed by Massimo Federici.

Electronic supplementary material

Below is the link to the electronic supplementary material.

Supplementary file1 (DOCX 28 kb)

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Rabbone, I., Traversi, D., Scaioli, G. et al. Microbiota, epidemiological and nutritional factors related to ketoacidosis at the onset of type 1 diabetes. Acta Diabetol 57, 1337–1349 (2020). https://doi.org/10.1007/s00592-020-01555-z

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s00592-020-01555-z

Keywords

Navigation