Skip to main content

Advertisement

Log in

The healthy Nordic diet for blood glucose control: a systematic review and meta-analysis of randomized controlled clinical trials

  • Review Article
  • Published:
Acta Diabetologica Aims and scope Submit manuscript

Abstract

Aims

Investigations on the possible effect of the Nordic diet (ND) on the glycemic control and the risk of diabetes have led to inconsistent results. The present study tried to determine the effect of the ND on the markers of blood glucose control using a systematic review and meta-analysis of randomized controlled clinical trials (RCTs).

Methods

Predefined keywords were used to search PubMed, ISI Web of Science, Scopus and Google Scholar up to April 2019. The random effects model was used to compute the overall estimates.

Results

In total, six RCTs with 618 participants (6–26 weeks of follow-up period) were included in the present study. The meta-analysis revealed that the ND might not have a considerable effect on fasting blood glucose levels [weighted mean difference (WMD) = −0.05 mmol/l, 95% CI − 0.13, 0.01, P = 0.112]. In contrast, the analyses showed that the ND significantly reduces serum insulin concentrations (WMD = −1.12 mU/l, 95% CI − 1.84, − 0.39, P = 0.002) and the homeostasis model assessment for insulin resistance (HOMA-IR) (WMD = − 0.34, 95% CI − 0.53, − 0.14, P = 0.001) compared to control diets. The effect on serum insulin levels was sensitive to one of the included studies. This dietary pattern did not significantly affect 2-h post-prandial blood glucose and Matsuda index.

Conclusions

Adherence to the ND might improve serum insulin and HOMA-IR levels; however, this effect was not confirmed for other markers of blood glucose control. Future well-designed and long-term clinical trials are highly recommended.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4

Similar content being viewed by others

References

  1. International Diabetes Federation (2016) IDF seventh edition. http://www.diabetesatlas.org/. Accessed May 2019

  2. WHO (2016) Fact sheet no. 312: diabetes. WHO, Geneva

    Google Scholar 

  3. Zandbergen AA, Sijbrands EJ, Lamberts SW, Bootsma AH (2006) Normotensive women with type 2 diabetes and microalbuminuria are at high risk for macrovascular disease. Diabetes Care 29(8):1851–1855. https://doi.org/10.2337/dc06-0287

    Article  PubMed  Google Scholar 

  4. Mahajan A, Go MJ, Zhang W et al (2014) Genome-wide trans-ancestry meta-analysis provides insight into the genetic architecture of type 2 diabetes susceptibility. Nat Genet 46(3):234–244. https://doi.org/10.1038/ng.2897

    Article  CAS  PubMed  Google Scholar 

  5. Tuomilehto J, Lindstrom J, Eriksson JG et al (2001) Prevention of type 2 diabetes mellitus by changes in lifestyle among subjects with impaired glucose tolerance. N Engl J Med 344(18):1343–1350. https://doi.org/10.1056/nejm200105033441801

    Article  CAS  PubMed  Google Scholar 

  6. American Diabetes Association (2017) 4. Lifestyle management. Diabetes Care 40(Suppl 1):S33–S43. https://doi.org/10.2337/dc17-s007

    Article  Google Scholar 

  7. American Diabetes Association (2017) 9. Cardiovascular disease and risk management. Diabetes Care 40(Suppl 1):S75–S87. https://doi.org/10.2337/dc17-s012

    Article  Google Scholar 

  8. Brug J, Oenema A (2006) Healthful nutrition promotion in Europe: goals, target populations, and strategies. Patient Educ Couns 63(1–2):255–257

    PubMed  Google Scholar 

  9. Shirani F, Salehi-Abargouei A, Azadbakht L (2013) Effects of dietary approaches to stop hypertension (DASH) diet on some risk for developing type 2 diabetes: a systematic review and meta-analysis on controlled clinical trials. Nutrition 29(7–8):939–947. https://doi.org/10.1016/j.nut.2012.12.021

    Article  PubMed  Google Scholar 

  10. Kastorini CM, Milionis HJ, Esposito K, Giugliano D, Goudevenos JA, Panagiotakos DB (2011) The effect of Mediterranean diet on metabolic syndrome and its components: a meta-analysis of 50 studies and 534,906 individuals. J Am Coll Cardiol 57(11):1299–1313. https://doi.org/10.1016/j.jacc.2010.09.073

    Article  CAS  PubMed  Google Scholar 

  11. Mithril C, Dragsted LO, Meyer C, Blauert E, Holt MK, Astrup A (2012) Guidelines for the New Nordic Diet. Public Health Nutr 15(10):1941–1947. https://doi.org/10.1017/s136898001100351x

    Article  PubMed  Google Scholar 

  12. Uusitupa M, Hermansen K, Savolainen MJ et al (2013) Effects of an isocaloric healthy Nordic diet on insulin sensitivity, lipid profile and inflammation markers in metabolic syndrome—a randomized study (SYSDIET). J Intern Med 274(1):52–66. https://doi.org/10.1111/joim.12044

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  13. Sofi F, Cesari F, Abbate R, Gensini GF, Casini A (2008) Adherence to Mediterranean diet and health status: meta-analysis. BMJ (Clin Res Ed) 337:a1344. https://doi.org/10.1136/bmj.a1344

    Article  Google Scholar 

  14. Sacks FM, Svetkey LP, Vollmer WM et al (2001) Effects on blood pressure of reduced dietary sodium and the Dietary Approaches to Stop Hypertension (DASH) diet. N Engl J Med 344(1):3–10. https://doi.org/10.1056/nejm200101043440101

    Article  CAS  PubMed  Google Scholar 

  15. Whelton PK, He J, Appel LJ et al (2002) Primary prevention of hypertension: clinical and public health advisory from The National High Blood Pressure Education Program. JAMA 288(15):1882–1888

    Article  PubMed  Google Scholar 

  16. Ramezani-Jolfaie N, Mohammadi M, Salehi-Abargouei A (2018) The effect of healthy Nordic diet on cardio-metabolic markers: a systematic review and meta-analysis of randomized controlled clinical trials. Eur J Nutr. https://doi.org/10.1007/s00394-018-1804-0

    Article  PubMed  Google Scholar 

  17. Sakhaei R, Ramezani-Jolfaie N, Mohammadi M, Salehi-Abargouei A (2019) The healthy Nordic dietary pattern has no effect on inflammatory markers: a systematic review and meta-analysis of randomized controlled clinical trials. Nutrition 58:140–148. https://doi.org/10.1016/j.nut.2018.06.020

    Article  PubMed  Google Scholar 

  18. Poulsen SK, Due A, Jordy AB et al (2014) Health effect of the New Nordic Diet in adults with increased waist circumference: a 6-mo randomized controlled trial. Am J Clin Nutr 99(1):35–45. https://doi.org/10.3945/ajcn.113.069393

    Article  CAS  PubMed  Google Scholar 

  19. Fritzen AM, Lundsgaard AM, Jordy AB et al (2015) New Nordic Diet—induced weight loss is accompanied by changes in metabolism and AMPK signaling in adipose tissue. J Clin Endocrinol Metab 100(9):3509–3519. https://doi.org/10.1210/jc.2015-2079

    Article  CAS  PubMed  Google Scholar 

  20. Adamsson V, Reumark A, Fredriksson IB et al (2011) Effects of a healthy Nordic diet on cardiovascular risk factors in hypercholesterolaemic subjects: a randomized controlled trial (NORDIET). J Intern Med 269(2):150–159. https://doi.org/10.1111/j.1365-2796.2010.02290.x

    Article  CAS  PubMed  Google Scholar 

  21. Salehi-abargouei A, Zimorovat A, Mohammadi M, Ramezani-Jolfaie N (2017) Effects of Nordic diet on glycemic control in adults: a systematic review and meta-analysis of controlled clinical trials. PROSPERO. CRD42017058954. https://www.crd.york.ac.uk/PROSPERO/myprospero.php. Cited 3 Apr 2017

  22. Liberati A, Altman DG, Tetzlaff J et al (2009) The PRISMA statement for reporting systematic reviews and meta-analyses of studies that evaluate health care interventions: explanation and elaboration. PLoS Med 6(7):e1000100. https://doi.org/10.1371/journal.pmed.1000100

    Article  PubMed  PubMed Central  Google Scholar 

  23. Higgins JP, Green S (2011) Cochrane handbook for systematic reviews of interventions, vol 4. Wiley, New York

    Google Scholar 

  24. DerSimonian R, Laird N (1986) Meta-analysis in clinical trials. Control Clin Trials 7(3):177–188

    Article  CAS  PubMed  Google Scholar 

  25. Higgins JP, Thompson SG (2002) Quantifying heterogeneity in a meta-analysis. Stat Med 21(11):1539–1558. https://doi.org/10.1002/sim.1186

    Article  PubMed  Google Scholar 

  26. Egger M, Davey-Smith G, Altman D (2008) Systematic reviews in health care: meta-analysis in context. Wiley, New York

    Google Scholar 

  27. Egger M, Davey Smith G, Schneider M, Minder C (1997) Bias in meta-analysis detected by a simple, graphical test. BMJ (Clin Res Ed) 315(7109):629–634

    Article  CAS  Google Scholar 

  28. Andersen R, Biltoft-Jensen A, Andersen EW et al (2015) Effects of school meals based on the New Nordic Diet on intake of signature foods: a randomised controlled trial. The OPUS School Meal Study. Br J Nutr 114(5):772–779. https://doi.org/10.1017/S0007114515002299

    Article  CAS  PubMed  Google Scholar 

  29. Biltoft-Jensen A, Damsgaard CT, Andersen R et al (2015) Accuracy of self-reported intake of signature foods in a school meal intervention study: comparison between control and intervention period. Br J Nutr 114(4):635–644. https://doi.org/10.1017/S0007114515002020

    Article  CAS  PubMed  Google Scholar 

  30. Damsgaard CT, Dalskov SM, Laursen RP et al (2014) Provision of healthy school meals does not affect the metabolic syndrome score in 8–11-year-old children, but reduces cardiometabolic risk markers despite increasing waist circumference. Br J Nutr 112(11):1826–1836. https://doi.org/10.1017/s0007114514003043

    Article  CAS  PubMed  Google Scholar 

  31. Damsgaard CT, Dalskov SM, Petersen RA et al (2012) Design of the OPUS School Meal Study: a randomised controlled trial assessing the impact of serving school meals based on the New Nordic Diet. Scand J Public Health 40(8):693–703. https://doi.org/10.1177/1403494812463173

    Article  PubMed  Google Scholar 

  32. Damsgaard CT, Ritz C, Dalskov SM et al (2016) Associations between school meal-induced dietary changes and metabolic syndrome markers in 8–11-year-old Danish children. Eur J Nutr 55(5):1973–1984. https://doi.org/10.1007/s00394-015-1013-z

    Article  CAS  PubMed  Google Scholar 

  33. Petersen RA, Damsgaard CT, Dalskov SM et al (2015) Effects of school meals with weekly fish servings on vitamin D status in Danish children: secondary outcomes from the OPUS (Optimal well-being, development and health for Danish children through a healthy New Nordic Diet) School Meal Study. J Nutr Sci. https://doi.org/10.1017/jns.2015.15

    Article  PubMed  PubMed Central  Google Scholar 

  34. Sorensen LB, Damsgaard CT, Dalskov SM et al (2015) Diet-induced changes in iron and n-3 fatty acid status and associations with cognitive performance in 8–11-year-old Danish children: secondary analyses of the Optimal Well-Being, Development and Health for Danish Children through a Healthy New Nordic Diet School Meal Study. Br J Nutr 114(10):1623–1637. https://doi.org/10.1017/S0007114515003323

    Article  CAS  PubMed  Google Scholar 

  35. Sorensen LB, Dyssegaard CB, Damsgaard CT et al (2015) The effects of Nordic school meals on concentration and school performance in 8- to 11-year-old children in the OPUS School Meal Study: a cluster-randomised, controlled, cross-over trial. Br J Nutr 113(8):1280–1291. https://doi.org/10.1017/S0007114515000033

    Article  CAS  PubMed  Google Scholar 

  36. Thorsen AV, Lassen AD, Andersen EW et al (2015) Plate waste and intake of school lunch based on the new Nordic diet and on packed lunches: a randomised controlled trial in 8- to 11-year-old Danish children. J Nutr Sci. https://doi.org/10.1017/jns.2015.3

    Article  PubMed  PubMed Central  Google Scholar 

  37. Andersen R, Biltoft-Jensen A, Christensen T et al (2014) Dietary effects of introducing school meals based on the New Nordic Diet—a randomised controlled trial in Danish children. The OPUS School Meal Study. Br J Nutr 111(11):1967–1976. https://doi.org/10.1017/S0007114514000634

    Article  CAS  PubMed  Google Scholar 

  38. Adamsson V, Cederholm T, Vessby B, Riserus U (2014) Influence of a healthy Nordic diet on serum fatty acid composition and associations with blood lipoproteins—results from the NORDIET study. Food Nutr Res. https://doi.org/10.3402/fnr.v58.24114

    Article  PubMed  PubMed Central  Google Scholar 

  39. Andersen MBS, Rinnan A, Manach C et al (2014) Untargeted metabolomics as a screening tool for estimating compliance to a dietary pattern. J Proteome Res 13(3):1405–1418. https://doi.org/10.1021/pr400964s

    Article  CAS  PubMed  Google Scholar 

  40. Brader L, Rejnmark L, Carlberg C et al (2014) Effects of a healthy Nordic diet on plasma 25-hydroxyvitamin D concentration in subjects with metabolic syndrome: a randomized, placebo-controlled trial (SYSDIET). Eur J Nutr 53(4):1123–1134. https://doi.org/10.1007/s00394-014-0674-3

    Article  CAS  PubMed  Google Scholar 

  41. Brader L, Uusitupa M, Dragsted LO, Hermansen K (2014) Effects of an isocaloric healthy Nordic diet on ambulatory blood pressure in metabolic syndrome: a randomized SYSDIET sub-study. Eur J Clin Nutr 68(1):57–63. https://doi.org/10.1038/ejcn.2013.192

    Article  CAS  PubMed  Google Scholar 

  42. Cuparencu CS, Andersen MBS, Gürdeniz G et al (2016) Identification of urinary biomarkers after consumption of sea buckthorn and strawberry, by untargeted LC–MS metabolomics: a meal study in adult men. Metabolomics 12(2):1–20. https://doi.org/10.1007/s11306-015-0934-0

    Article  CAS  Google Scholar 

  43. Hanhineva K, Lankinen MA, Pedret A et al (2015) Nontargeted metabolite profiling discriminates diet-specific biomarkers for consumption of whole grains, fatty fish, and bilberries in a randomized controlled trial. J Nutr 145(1):7–17. https://doi.org/10.3945/jn.114.196840

    Article  CAS  PubMed  Google Scholar 

  44. Huseinovic E, Bertz F, Agelii ML, Johansson EH, Winkvist A, Brekke HK (2016) Effectiveness of a weight loss intervention in postpartum women: results from a randomized controlled trial in primary health care. Am J Clin Nutr 104(2):362–370. https://doi.org/10.3945/ajcn.116.135673

    Article  CAS  PubMed  Google Scholar 

  45. Jobs E, Adamsson V, Larsson A et al (2014) Influence of a prudent diet on circulating cathepsin S in humans. Nutr J. https://doi.org/10.1186/1475-2891-13-84

    Article  PubMed  PubMed Central  Google Scholar 

  46. Khakimov B, Poulsen SK, Savorani F et al (2016) New Nordic diet versus average Danish diet: a randomized controlled trial revealed healthy long-term effects of the new Nordic diet by GC–MS blood plasma metabolomics. J Proteome Res 15(6):1939–1954. https://doi.org/10.1021/acs.jproteome.6b00109

    Article  CAS  PubMed  Google Scholar 

  47. Lankinen M, Schwab U, Kolehmainen M et al (2016) A healthy Nordic diet alters the plasma lipidomic profile in adults with features of metabolic syndrome in a multicenter randomized dietary intervention. J Nutr 146(4):662–672. https://doi.org/10.3945/jn.115.220459

    Article  CAS  Google Scholar 

  48. Leder L, Kolehmainen M, Narverud I et al (2016) Effects of a healthy Nordic diet on gene expression changes in peripheral blood mononuclear cells in response to an oral glucose tolerance test in subjects with metabolic syndrome: a SYSDIET sub-study. Genes Nutr. https://doi.org/10.1186/s12263-016-0521-4

    Article  PubMed  PubMed Central  Google Scholar 

  49. Magnusdottir OK, Landberg R, Gunnarsdottir I et al (2013) Plasma alkylresorcinols reflect important whole-grain components of a healthy Nordic diet. J Nutr 143(9):1383–1390. https://doi.org/10.3945/jn.113.175588

    Article  CAS  PubMed  Google Scholar 

  50. Marckmann P, Sandstrom B, Jespersen J (1995) Food intake of Danes and cardiac risk factors. Ugeskr Laeger 157(12):1667–1671

    CAS  PubMed  Google Scholar 

  51. Marckmann P, Sandström B, Jespersen J (1994) Low-fat, high-fiber diet favorably affects several independent risk markers of ischemic heart disease: observations on blood lipids, coagulation, and fibrinolysis from a trial of middle-aged Danes. Am J Clin Nutr 59(4):935–939

    Article  CAS  PubMed  Google Scholar 

  52. Poulsen S, Frost S, Rasmussen L, Astrup A, Larsen T (2011) Weight loss after 12 weeks with new Nordic diet vs. average Danish diet provided ad libitum—a randomized controlled trial using the shop model. Ann Nutr Metab 58:289

    Google Scholar 

  53. Roager HM, Licht TR, Poulsen SK, Larsen TM, Bahl MI (2014) Microbial enterotypes, inferred by the prevotella-to-bacteroides ratio, remained stable during a 6-month randomized controlled diet intervention with the New Nordic Diet. Appl Environ Microbiol 80(3):1142–1149. https://doi.org/10.1128/aem.03549-13

    Article  PubMed  PubMed Central  Google Scholar 

  54. Salomo L, Poulsen SK, Rix M, Kamper AL, Larsen TM, Astrup A (2016) The New Nordic Diet: phosphorus content and absorption. Eur J Nutr 55(3):991–996. https://doi.org/10.1007/s00394-015-0913-2

    Article  CAS  PubMed  Google Scholar 

  55. Sandstrom B, Marckmann P, Bindslev N (1992) An eight-month controlled study of a low-fat high-fibre diet: effects on blood lipids and blood pressure in healthy young subjects. Eur J Clin Nutr 46(2):95–109

    CAS  PubMed  Google Scholar 

  56. Andersson J, Mellberg C, Otten J et al (2016) Left ventricular remodelling changes without concomitant loss of myocardial fat after long-term dietary intervention. Int J Cardiol 216:92–96. https://doi.org/10.1016/j.ijcard.2016.04.050

    Article  PubMed  Google Scholar 

  57. Blomquist C, Alvehus M, Buren J et al (2017) Attenuated low-grade inflammation following long-term dietary intervention in postmenopausal women with obesity. Obesity 25(5):892–900. https://doi.org/10.1002/oby.21815

    Article  CAS  PubMed  Google Scholar 

  58. Boraxbekk CJ, Stomby A, Ryberg M et al (2015) Diet-induced weight loss alters functional brain responses during an episodic memory task. Obes Facts 8:261–272. https://doi.org/10.1159/000437157

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  59. Chorell E, Ryberg M, Larsson C et al (2016) Plasma metabolomic response to postmenopausal weight loss induced by different diets. Metabolomics. https://doi.org/10.1007/s11306-016-1013-x

    Article  PubMed  PubMed Central  Google Scholar 

  60. Mellberg C, Sandberg S, Ryberg M et al (2014) Long-term effects of a Palaeolithic-type diet in obese postmenopausal women: a 2-year randomized trial. Eur J Clin Nutr 68(3):350–357. https://doi.org/10.1038/ejcn.2013.290

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  61. Otten J, Mellberg C, Ryberg M et al (2016) Strong and persistent effect on liver fat with a Paleolithic diet during a two-year intervention. Int J Obes 40(5):747–753. https://doi.org/10.1038/ijo.2016.4

    Article  CAS  Google Scholar 

  62. Adamsson V, Reumark A, Marklund M, Larsson A, Riserus U (2015) Role of a prudent breakfast in improving cardiometabolic risk factors in subjects with hypercholesterolemia: a randomized controlled trial. Clin Nutr 34(1):20–26. https://doi.org/10.1016/j.clnu.2014.04.009

    Article  CAS  PubMed  Google Scholar 

  63. Magnusdottir OK, Landberg R, Gunnarsdottir I et al (2014) Plasma alkylresorcinols C17:0/C21:0 ratio, a biomarker of relative whole-grain rye intake, is associated to insulin sensitivity: a randomized study. Eur J Clin Nutr 68(4):453–458. https://doi.org/10.1038/ejcn.2014.12

    Article  CAS  PubMed  Google Scholar 

  64. Magnusdottir OK, Landberg R, Gunnarsdottir I et al (2014) Whole grain rye intake, reflected by a biomarker, is associated with favorable blood lipid outcomes in subjects with the metabolic syndrome—a randomized study. PLoS ONE 9(10):e110827. https://doi.org/10.1371/journal.pone.0110827

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  65. Ulven SM, Leder L, Elind E et al (2016) Exchanging a few commercial, regularly consumed food items with improved fat quality reduces total cholesterol and LDL-cholesterol: a double-blind, randomised controlled trial. Br J Nutr. https://doi.org/10.1017/S0007114516003445

    Article  PubMed  Google Scholar 

  66. Marklund M, Magnusdottir OK, Rosqvist F et al (2014) A dietary biomarker approach captures compliance and cardiometabolic effects of a healthy Nordic diet in individuals with metabolic syndrome. J Nutr 144(10):1642–1649. https://doi.org/10.3945/jn.114.193771

    Article  CAS  PubMed  Google Scholar 

  67. Darwiche G, Höglund P, Roth B et al (2016) An Okinawan-based Nordic diet improves anthropometry, metabolic control, and health-related quality of life in Scandinavian patients with type 2 diabetes: a pilot trial. Food Nutr Res. https://doi.org/10.3402/fnr.v60.32594

    Article  PubMed  PubMed Central  Google Scholar 

  68. Lankinen M, Kolehmainen M, Jaaskelainen T et al (2014) Effects of whole grain, fish and bilberries on serum metabolic profile and lipid transfer protein activities: a randomized trial (Sysdimet). PLoS ONE 9(2):e90352. https://doi.org/10.1371/journal.pone.0090352

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  69. Kolehmainen M, Ulven SM, Paananen J et al (2015) Healthy Nordic diet downregulates the expression of genes involved in inflammation in subcutaneous adipose tissue in individuals with features of the metabolic syndrome. Am J Clin Nutr 101(1):228–239. https://doi.org/10.3945/ajcn.114.092783

    Article  CAS  PubMed  Google Scholar 

  70. de Mello VD, Schwab U, Kolehmainen M et al (2011) A diet high in fatty fish, bilberries and wholegrain products improves markers of endothelial function and inflammation in individuals with impaired glucose metabolism in a randomised controlled trial: the Sysdimet study. Diabetologia 54(11):2755–2767. https://doi.org/10.1007/s00125-011-2285-3

    Article  CAS  PubMed  Google Scholar 

  71. Li G, Zhang P, Wang J et al (2008) The long-term effect of lifestyle interventions to prevent diabetes in the China Da Qing Diabetes Prevention Study: a 20-year follow-up study. Lancet 371(9626):1783–1789. https://doi.org/10.1016/s0140-6736(08)60766-7

    Article  PubMed  Google Scholar 

  72. Knowler WC, Fowler SE, Hamman RF et al (2009) 10-Year follow-up of diabetes incidence and weight loss in the Diabetes Prevention Program Outcomes Study. Lancet 374(9702):1677–1686. https://doi.org/10.1016/s0140-6736(09)61457-4

    Article  PubMed  Google Scholar 

  73. Cho SS, Qi L, Fahey GC Jr, Klurfeld DM (2013) Consumption of cereal fiber, mixtures of whole grains and bran, and whole grains and risk reduction in type 2 diabetes, obesity, and cardiovascular disease. Am J Clin Nutr 98(2):594–619. https://doi.org/10.3945/ajcn.113.067629

    Article  CAS  PubMed  Google Scholar 

  74. Franz MJ, Boucher JL, Rutten-Ramos S, VanWormer JJ (2015) Lifestyle weight-loss intervention outcomes in overweight and obese adults with type 2 diabetes: a systematic review and meta-analysis of randomized clinical trials. J Acad Nutr Diet 115(9):1447–1463. https://doi.org/10.1016/j.jand.2015.02.031

    Article  PubMed  Google Scholar 

  75. Rock CL, Flatt SW, Pakiz B et al (2014) Weight loss, glycemic control, and cardiovascular disease risk factors in response to differential diet composition in a weight loss program in type 2 diabetes: a randomized controlled trial. Diabetes Care 37(6):1573–1580. https://doi.org/10.2337/dc13-2900

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  76. Burton-Freeman B (2000) Dietary fiber and energy regulation. J Nutr 130(2S Suppl):272s–275s. https://doi.org/10.1093/jn/130.2.272S

    Article  CAS  PubMed  Google Scholar 

  77. Overby NC, Sonestedt E, Laaksonen DE, Birgisdottir BE (2013) Dietary fiber and the glycemic index: a background paper for the Nordic Nutrition Recommendations 2012. Food Nutr Res. https://doi.org/10.3402/fnr.v57i0.20709

    Article  PubMed  PubMed Central  Google Scholar 

  78. Blaak EE, Antoine JM, Benton D et al (2012) Impact of postprandial glycaemia on health and prevention of disease. Obes Rev 13(10):923–984. https://doi.org/10.1111/j.1467-789X.2012.01011.x

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  79. Chandalia M, Garg A, Lutjohann D, von Bergmann K, Grundy SM, Brinkley LJ (2000) Beneficial effects of high dietary fiber intake in patients with type 2 diabetes mellitus. N Engl J Med 342(19):1392–1398. https://doi.org/10.1056/nejm200005113421903

    Article  CAS  PubMed  Google Scholar 

  80. Santesso N, Akl EA, Bianchi M et al (2012) Effects of higher- versus lower-protein diets on health outcomes: a systematic review and meta-analysis. Eur J Clin Nutr 66(7):780–788. https://doi.org/10.1038/ejcn.2012.37

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  81. Weigle DS, Breen PA, Matthys CC et al (2005) A high-protein diet induces sustained reductions in appetite, ad libitum caloric intake, and body weight despite compensatory changes in diurnal plasma leptin and ghrelin concentrations. Am J Clin Nutr 82(1):41–48. https://doi.org/10.1093/ajcn.82.1.41

    Article  CAS  PubMed  Google Scholar 

  82. Hirasawa A, Tsumaya K, Awaji T et al (2005) Free fatty acids regulate gut incretin glucagon-like peptide-1 secretion through GPR120. Nat Med 11(1):90–94. https://doi.org/10.1038/nm1168

    Article  CAS  PubMed  Google Scholar 

  83. Oh DY, Talukdar S, Bae EJ et al (2010) GPR120 is an omega-3 fatty acid receptor mediating potent anti-inflammatory and insulin-sensitizing effects. Cell 142(5):687–698. https://doi.org/10.1016/j.cell.2010.07.041

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  84. Briscoe CP, Tadayyon M, Andrews JL et al (2003) The orphan G protein-coupled receptor GPR40 is activated by medium and long chain fatty acids. J Biol Chem 278(13):11303–11311. https://doi.org/10.1074/jbc.M211495200

    Article  CAS  PubMed  Google Scholar 

  85. Gannon NP, Conn CA, Vaughan RA (2015) Dietary stimulators of GLUT4 expression and translocation in skeletal muscle: a mini-review. Mol Nutr Food Res 59(1):48–64. https://doi.org/10.1002/mnfr.201400414

    Article  CAS  PubMed  Google Scholar 

  86. Newsholme P, Cruzat VF, Keane KN, Carlessi R, de Bittencourt PI Jr (2016) Molecular mechanisms of ROS production and oxidative stress in diabetes. Biochem J 473(24):4527–4550. https://doi.org/10.1042/bcj20160503c

    Article  CAS  PubMed  Google Scholar 

  87. Xu H, Luo J, Huang J, Wen Q (2018) Flavonoids intake and risk of type 2 diabetes mellitus: a meta-analysis of prospective cohort studies. Medicine 97(19):e0686. https://doi.org/10.1097/md.0000000000010686

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  88. Grosso G, Micek A, Godos J et al (2017) Dietary flavonoid and lignan intake and mortality in prospective cohort studies: systematic review and dose-response meta-analysis. Am J Epidemiol 185(12):1304–1316. https://doi.org/10.1093/aje/kww207

    Article  PubMed  Google Scholar 

  89. Wang X, Ouyang YY, Liu J, Zhao G (2014) Flavonoid intake and risk of CVD: a systematic review and meta-analysis of prospective cohort studies. Br J Nutr 111(1):1–11. https://doi.org/10.1017/s000711451300278x

    Article  PubMed  Google Scholar 

  90. Grosso G, Godos J, Lamuela-Raventos R et al (2017) A comprehensive meta-analysis on dietary flavonoid and lignan intake and cancer risk: level of evidence and limitations. Mol Nutr Food Res. https://doi.org/10.1002/mnfr.201600930

    Article  PubMed  Google Scholar 

  91. Williamson G, Manach C (2005) Bioavailability and bioefficacy of polyphenols in humans. II. Review of 93 intervention studies. Am J Clin Nutr 81(1 Suppl):243s–255s. https://doi.org/10.1093/ajcn/81.1.243S

    Article  CAS  PubMed  Google Scholar 

  92. Ross JA, Kasum CM (2002) Dietary flavonoids: bioavailability, metabolic effects, and safety. Annu Rev Nutr 22:19–34. https://doi.org/10.1146/annurev.nutr.22.111401.144957

    Article  CAS  PubMed  Google Scholar 

  93. Bravo L (1998) Polyphenols: chemistry, dietary sources, metabolism, and nutritional significance. Nutr Rev 56(11):317–333

    Article  CAS  PubMed  Google Scholar 

  94. Kim DJ, Xun P, Liu K et al (2010) Magnesium intake in relation to systemic inflammation, insulin resistance, and the incidence of diabetes. Diabetes Care 33(12):2604–2610. https://doi.org/10.2337/dc10-0994

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  95. Song Y, Manson JE, Buring JE, Liu S (2004) Dietary magnesium intake in relation to plasma insulin levels and risk of type 2 diabetes in women. Diabetes Care 27(1):59–65

    Article  PubMed  Google Scholar 

  96. Kao WH, Folsom AR, Nieto FJ, Mo JP, Watson RL, Brancati FL (1999) Serum and dietary magnesium and the risk for type 2 diabetes mellitus: the Atherosclerosis Risk in Communities Study. Arch Intern Med 159(18):2151–2159

    Article  CAS  PubMed  Google Scholar 

  97. Humphries S, Kushner H, Falkner B (1999) Low dietary magnesium is associated with insulin resistance in a sample of young, nondiabetic Black Americans. Am J Hypertens 12(8 Pt 1):747–756

    Article  CAS  PubMed  Google Scholar 

  98. Dong JY, Xun P, He K, Qin LQ (2011) Magnesium intake and risk of type 2 diabetes: meta-analysis of prospective cohort studies. Diab Care 34(9):2116–2122. https://doi.org/10.2337/dc11-0518

    Article  CAS  Google Scholar 

  99. Huo R, Du T, Xu Y et al (2015) Effects of Mediterranean-style diet on glycemic control, weight loss and cardiovascular risk factors among type 2 diabetes individuals: a meta-analysis. Eur J Clin Nutr 69(11):1200–1208. https://doi.org/10.1038/ejcn.2014.243

    Article  CAS  PubMed  Google Scholar 

  100. Lacoppidan SA, Kyro C, Loft S et al (2015) Adherence to a healthy Nordic food index is associated with a lower risk of type-2 diabetes—the Danish diet, Cancer and Health Cohort Study. Nutrients 7(10):8633–8644. https://doi.org/10.3390/nu7105418

    Article  PubMed  PubMed Central  Google Scholar 

  101. Kanerva N, Rissanen H, Knekt P, Havulinna AS, Eriksson JG, Mannisto S (2014) The healthy Nordic diet and incidence of type 2 diabetes—10-year follow-up. Diabetes Res Clin Pract 106(2):e34–e37. https://doi.org/10.1016/j.diabres.2014.08.016

    Article  CAS  PubMed  Google Scholar 

Download references

Funding

The study was funded by Nutrition and Food Security research center, Shahid Sadoughi University of Medical Sciences, Yazd, Iran (Grant No. 5961).

Author information

Authors and Affiliations

Authors

Contributions

The authors’ contribution was as follows: ASA, MM, and NRJ conceived and designed the research; MM and NRJ conducted the systematic research and study selection; MM, NRJ, and AZ extracted data; ASA and MM analyzed data; AZ, MM and ASA wrote and edited the manuscript. All authors read and approved the final manuscript.

Corresponding author

Correspondence to Amin Salehi-Abargouei.

Ethics declarations

Conflict of interest

The authors declare that they have no conflict of interest to report for the present study.

Ethical standard

This article does not contain any studies with human participants performed by any of the authors.

Informed consent

Not applicable.

Additional information

Managed by Antonio Secchi.

Publisher's Note

Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Electronic supplementary material

Below is the link to the electronic supplementary material.

Supplementary material 1 (DOCX 227 kb)

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Zimorovat, A., Mohammadi, M., Ramezani-Jolfaie, N. et al. The healthy Nordic diet for blood glucose control: a systematic review and meta-analysis of randomized controlled clinical trials. Acta Diabetol 57, 1–12 (2020). https://doi.org/10.1007/s00592-019-01369-8

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s00592-019-01369-8

Keywords

Navigation