Skip to main content

Lung function measurements in the prediabetes stage: data from the ILERVAS Project

Abstract

Aims

Patients with type 2 diabetes have been considered a susceptible group for pulmonary dysfunction. Our aim was to assess pulmonary function on the prediabetes stage.

Methods

Pulmonary function was assessed in 4,459 non-diabetic subjects, aged between 45 and 70 years, without cardiovascular disease or chronic pulmonary obstructive disease from the ongoing study ILERVAS. A “restrictive spirometric pattern”, an “abnormal FEV1” and an “obstructive ventilatory defect” were assessed. Prediabetes was defined by glycosylated hemoglobin (HbA1c) between 5.7 and 6.4% according to the American Diabetes Association criteria.

Results

Population was composed of 52.1% women, aged 57 [53;63] years, a BMI of 28.6 [25.8;31.8] kg/m2, and with a prevalence of prediabetes of 29.9% (n = 1392). Subjects with prediabetes had lower forced vital capacity (FVC: 93 [82;105] vs. 96 [84;106], p < 0.001) and lower forced expired volume in the first second (FEV1: 94 [82;107] vs. 96 [84;108], p = 0.011), as well as a higher percentage of the restrictive spirometric pattern (16.5% vs. 13.6%, p = 0.015) and FEV1 < 80% (20.3% vs. 17.2%, p = 0.017) compared to non-prediabetes group. In the prediabetes group, HbA1c was negatively correlated with both pulmonary parameters (FVC: r = − 0.113, p < 0.001; FEV1: r = − 0.079, p = 0.003). The multivariable logistic regression model in the whole population showed that there was a significant and independent association between HbA1c with both restrictive spirometric pattern [OR = 1.42 (1.10–1.83), p = 0.008] and FEV1 < 80% [OR = 1.50 (1.19–1.90), p = 0.001].

Conclusions

The deleterious effect of type 2 diabetes on pulmonary function appears to be initiated in prediabetes, and it is related to metabolic control.

Trial registration ClinicalTrials.gov

NCT03228459.

This is a preview of subscription content, access via your institution.

Fig. 1

References

  1. 1.

    Lecube A, Simó R, Pallayova M et al (2017) Pulmonary function and sleep breathing: two new targets for type 2 diabetes. Endocr Rev 38:550–573

    PubMed  Google Scholar 

  2. 2.

    van den Borst B, Gosker HR, Zeegers MP et al (2010) Pulmonary function in diabetes. A metaanalysis. Chest 138:393–406

    PubMed  Google Scholar 

  3. 3.

    Klein OL, Krishnan JA, Glick S et al (2010) Systematic review of the association between lung function and Type 2 diabetes mellitus. Diabet Med 27:977–987

    CAS  PubMed  Google Scholar 

  4. 4.

    Davis TM, Knuiman M, Kendall P et al (2000) Reduced pulmonary function and its associations in type 2 diabetes: the Fremantle Diabetes Study. Diabetes Res Clin Pract 50:153–159

    CAS  PubMed  Google Scholar 

  5. 5.

    Walter RE, Beiser A, Givelber RJ et al (2003) Association between glycemic state and lung function: the Framingham Heart Study. Am J Respir Crit Care Med 167:911–916

    PubMed  Google Scholar 

  6. 6.

    Yeh HC, Punjabi NM, Wang NY et al (2008) Cross-sectional and prospective study of lung function in adults with type 2 diabetes: the atherosclerosis risk in communities (ARIC) study. Diabetes Care 31:741–746

    PubMed  Google Scholar 

  7. 7.

    Kodolova IM, Lysenko LV, Saltykov BB (1982) Changes in the lungs in diabetes mellitus. Arkh Patol 44:35–40

    CAS  PubMed  Google Scholar 

  8. 8.

    Chance WW, Rhee C, Yilmaz C et al (2008) Diminished alveolar microvascular reserves in type 2 diabetes reflect systemic microangiopathy. Diabetes Care 31:1596–1601

    PubMed  PubMed Central  Google Scholar 

  9. 9.

    Sánchez E, Lecube A, Betriu À et al (2018) Subcutaneous advanced glycation end-products and lung function according to glucose abnormalities: the ILERVAS project. Diabetes Metab. https://doi.org/10.1016/j.diabet.2018.04.002

    Article  PubMed  Google Scholar 

  10. 10.

    Bellmunt MJ, Portero M, Pamplona R et al (1995) Evidence for the Maillard reaction in rat lung collagen and its relationship with solubility and age. Biochim Biophys Acta 1272:53–60

    PubMed  Google Scholar 

  11. 11.

    Lange P, Groth S, Mortensen J et al (1990) Diabetes mellitus and ventilator capacity: a five year follow-up study. Eur Respir J 3:288–292

    CAS  PubMed  Google Scholar 

  12. 12.

    Yamane T, Yokoyama A, Kitahara Y et al (2013) Cross-sectional and prospective study of the association between lung function and prediabetes. BMJ Open 3:e002179

    PubMed  PubMed Central  Google Scholar 

  13. 13.

    Li Y, Saito M, Tobimatsu S et al (2013) Prediabetes and impaired lung function in asymptomatic adults. Diabetes Res Clin Pract 100:e51–e54

    PubMed  Google Scholar 

  14. 14.

    Menke A, Casagrande S, Geiss L et al (2015) Prevalence of and trends in diabetes among adults in the United States, 1988–2012. JAMA 314:1021–1029

    CAS  PubMed  Google Scholar 

  15. 15.

    Huang Y, Cai X, Mai W et al (2016) Association between prediabetes and risk of cardiovascular disease and all cause mortality: systematic review and meta-analysis. BMJ 355:i5953

    PubMed  PubMed Central  Google Scholar 

  16. 16.

    Markus M, Ittermann T, Baumeister S et al (2018) Prediabetes is associated with microalbuminuria, reduced kidney function and chronic kidney disease in the general population. Nutr Metab Cardiovasc Dis 28:234–242

    CAS  PubMed  Google Scholar 

  17. 17.

    Diabetes Prevention Program Research Group (2007) The prevalence of retinopathy in impaired glucose tolerance and recent-onset diabetes in the Diabetes Prevention Program. Diabet Med 24:137–144

    PubMed Central  Google Scholar 

  18. 18.

    Betriu À, Farràs C, Abajo M et al (2016) Randomised intervention study to assess the prevalence of subclinical vascular disease and hidden kidney disease and its impact on morbidity and mortality: the ILERVAS project. Nefrologia 36:389–396

    PubMed  Google Scholar 

  19. 19.

    Clinical guidelines on the identification, evaluation, and treatment of overweight and obesity in adults—the evidence report (1998) National Institutes of Health. Obes Res 6(Suppl 2):51S–209S

    Google Scholar 

  20. 20.

    American Diabetes Association (2017) Classification and diagnosis of diabetes. Section 2. In Standards of Medical Care in Diabetes—2017. Diabetes Care 40:S11–S24

    Google Scholar 

  21. 21.

    Lenters-Westra E, Slingerland RJ (2014) Three of 7 hemoglobin A1c point-of-care instruments do not meet generally accepted analytical performance criteria. Clin Chem 60:1062–1072

    CAS  PubMed  Google Scholar 

  22. 22.

    Miller M, Hankinson J, Brusasco V et al (2005) Standardisation of spirometry. Eur Respir J 26:319–338

    CAS  PubMed  Google Scholar 

  23. 23.

    Backman H, Eriksson B, Hedman L et al (2016) Restrictive spirometric pattern in the general adult population: methods of defining the condition and consequences on prevalence. Respir Med 120:116–123

    PubMed  Google Scholar 

  24. 24.

    Vogelmeier CF, Criner GJ, Martinez FJ et al (2017) Global strategy for the diagnosis, management, and prevention of chronic obstructive lung disease 2017 report. GOLD executive summary. Am J Respir Crit Care Med 195:557–582

    CAS  PubMed  Google Scholar 

  25. 25.

    Wasserman DH, Wang TJ, Brown NJ (2018) The vasculature in prediabetes. Circ Res 122:1135–1150

    CAS  PubMed  PubMed Central  Google Scholar 

  26. 26.

    Gateva A, Assyov Y, Tsakova A et al (2018) Classical (adiponectin, leptin, resistin) and new (chemerin, vaspin, omentin) adipocytokines in patients with prediabetes. Horm Mol Biol Clin Investig. https://doi.org/10.1515/hmbci-2017-0031

    Article  PubMed  Google Scholar 

  27. 27.

    Di Pino A, Urbano F, Zagami RM et al (2016) Low endogenous secretory receptor for advanced glycation end-products levels are associated with inflammation and carotid atherosclerosis in prediabetes. J Clin Endocrinol Metab 101:1701–1709

    PubMed  Google Scholar 

  28. 28.

    Schünemann HJ, Dorn J, Grant BJ et al (2000) Pulmonary function is a long-term predictor of mortality in the general population: 29-year follow-up of the Buffalo Health Study. Chest 118:656–664

    PubMed  Google Scholar 

  29. 29.

    Davis WA, Knuiman M, Kendall P et al (2004) Glycemic exposure is associated with reduced pulmonary function in type 2 diabetes: the Fremantle Diabetes Study. Diabetes Care 27:752–757

    PubMed  Google Scholar 

  30. 30.

    du Bois RM, Weycker D, Albera C et al (2011) Forced vital capacity in patients with idiopathic pulmonary fibrosis: test properties and minimal clinically important difference. Am J Respir Crit Care Med 184:1382–1389

    PubMed  Google Scholar 

  31. 31.

    Lazarus R, Sparrow D, Weiss ST (1998) Impaired ventilatory function and elevated insulin levels in nondiabetic males: the Normative Aging Study. Eur Respir J 12:635–640

    CAS  PubMed  Google Scholar 

  32. 32.

    Lawlor DA, Ebrahim S, Smith GD (2004) Associations of measures of lung function with insulin resistance and Type 2 diabetes: findings from the British Women’s Heart and Health Study. Diabetologia 47:195–203

    CAS  PubMed  Google Scholar 

  33. 33.

    Lecube A, Sampol G, Muñoz X et al (2010) Insulin resistance is related to impaired lung function in morbidly obese women: a case-control study. Diabetes Metab Res Rev 26:639–645

    CAS  PubMed  Google Scholar 

  34. 34.

    Petersen KF, Dufour S, Befroy D et al (2004) Impaired mitochondrial activity in the insulin-resistant offspring of patients with type 2 diabetes. N Engl J Med 350:664–671

    CAS  PubMed  PubMed Central  Google Scholar 

  35. 35.

    Lazarus R, Sparrow D, Weiss ST (1997) Handgrip strength and insulin levels: cross-sectional and prospective associations in the Normative Aging Study. Metabolism 46:1266–1269

    CAS  PubMed  Google Scholar 

  36. 36.

    Lim SY, Rhee EJ, Sung KC (2010) Metabolic syndrome, insulin resistance and systemic inflammation as risk factors for reduced lung function in korean nonsmoking males. J Korean Med Sci 25:1480–1486

    CAS  PubMed  PubMed Central  Google Scholar 

  37. 37.

    Singh S, Bodas M, Bhatraju NK et al (2016) Hyperinsulinemia adversely affects lung structure and function. Am J Physiol Lung Cell Mol Physiol 310:L837–L845

    PubMed  PubMed Central  Google Scholar 

  38. 38.

    Singh S, Prakash YS, Linneberg A et al (2013) Insulin and the lung: connecting asthma and metabolic syndrome. J Allergy (Cairo) 2013:627384

    Google Scholar 

  39. 39.

    Thuesen BH, Husemoen LLN, Hersoug LG et al (2009) Insulin resistance as a predictor of incident asthma-like symptoms in adults. Clin Exp Allergy 39:700–707

    CAS  PubMed  Google Scholar 

  40. 40.

    Ruttenstock E, Doi T, Dingemann J et al (2010) Insulin receptor is downregulated in the nitrofen-induced hypoplastic lung and the synthesis of surfactant may be regulated by IR. J Pediatr Surg 45:948–952

    PubMed  Google Scholar 

  41. 41.

    López-Cano C, Lecube A, García-Ramírez M et al (2017) Serum surfactant protein D as a biomarker for measuring lung involvement in obese type 2 diabetic patients. J Clin Endocrinol Metab 102:4109–4116

    PubMed  Google Scholar 

  42. 42.

    Kopf S, Groener JB, Kender Z et al (2018) Breathlessness and restrictive lung disease: an important diabetes-related feature in patients with type 2 diabetes. Respiration 96:29–40

    PubMed  Google Scholar 

  43. 43.

    Ledesma AV, Castro DS, Vargas GV et al (2018) Glycemic disorders and their impact on lung function. Cross-sectional study. Med Clin (Barc). https://doi.org/10.1016/j.medcli.2018.08.003

    Article  Google Scholar 

  44. 44.

    Kim CH, Kim HK, Kim EH et al (2015) Association of restrictive ventilatory dysfunction with the development of prediabetes and type 2 diabetes in Koreans. Acta Diabetol 52:357–363

    CAS  PubMed  Google Scholar 

  45. 45.

    Kinney GL, Baker EH, Klein OL et al (2016) Pulmonary predictors of incident diabetes in smokers. Chronic Obstr Pulm Dis 3:739–747

    PubMed  PubMed Central  Google Scholar 

  46. 46.

    Soriguer F, Goday A, Bosch-Comas A et al (2012) Prevalence of diabetes mellitus and impaired glucose regulation in Spain: the Di@betes study. Diabetologia 55:88–93

    CAS  PubMed  Google Scholar 

Download references

Acknowledgements

This work was supported by grants from the Lleida Provincial Council, Autonomous Government of Catalonia (2017SGR696 and SLT0021600250), Instituto de Salud Carlos III (Fondo de Investigación Sanitaria PI12/00803 and PI15/00260), and European Union (European Regional Development Fund, Fondo Europeo de Desarrollo Regional, “Una manera de hacer Europa”). CIBER de Diabetes y Enfermedades Metabólicas Asociadas and CIBER de Enfermedades Respiratorias are initiatives of the Instituto de Salud Carlos III. The authors would also like to thank Fundació Renal Jaume Arnó, IRBLleida (Eva Castro, Virtudes María, Marta Elias, Teresa Vidal, Mª del Valle Peña, Cristina Dominguez, Noemi Nova, Alba Prunera, Núria Sans, Meritxell Soria), and the Primary Care teams from Lleida for recruiting subjects and their efforts in the accurate development of the ILERVAS project.

Author information

Affiliations

Authors

Consortia

Corresponding author

Correspondence to Albert Lecube.

Ethics declarations

Conflict of interest

All author(s) declare that they have no conflict of interest.

Ethical approval

The protocol was approved by the Arnau de Vilanova University Hospital ethics committee (CEIC-1410). Additionally, the study was conducted according to the ethical guidelines of the Helsinki Declaration and Spanish legislation regarding the protection of personal information was also followed.

Informed consent

Informed consent was obtained from all individual participants included in the study.

Additional information

Publisher’s Note

Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

The members of the ILERVAS Project Collaborators are listed in Supplementary Appendix.

Managed By Massimo Porta.

Electronic supplementary material

Below is the link to the electronic supplementary material.

Supplementary material 1 (DOCX 17 KB)

Supplementary material 2 (DOCX 15 KB)

Rights and permissions

Reprints and Permissions

About this article

Verify currency and authenticity via CrossMark

Cite this article

Sánchez, E., Gutiérrez-Carrasquilla, L., Barbé, F. et al. Lung function measurements in the prediabetes stage: data from the ILERVAS Project. Acta Diabetol 56, 1005–1012 (2019). https://doi.org/10.1007/s00592-019-01333-6

Download citation

Keywords

  • Prediabetes
  • Pulmonary dysfunction
  • Forced vital capacity
  • Forced expiratory volume in the first second
  • Restrictive spirometric pattern