Advertisement

Acta Diabetologica

, Volume 56, Issue 4, pp 421–430 | Cite as

Impact of maternal BMI and gestational diabetes mellitus on maternal and cord blood metabolome: results from the PREOBE cohort study

  • Engy Shokry
  • Linda Marchioro
  • Olaf Uhl
  • Mercedes G. Bermúdez
  • Jose Antonio García-Santos
  • Mª Teresa Segura
  • Cristina Campoy
  • Berthold KoletzkoEmail author
Original Article
Part of the following topical collections:
  1. Pregnancy and diabetes

Abstract

Aims

Maternal obesity and gestational diabetes mellitus (GDM) were frequently reported to be risk factors for obesity and diabetes in offspring. Our goal was to study the impact of maternal prepregnancy BMI (pBMI) and GDM on both maternal and cord blood metabolic profiles.

Methods

We used LC–MS/MS to measure 201 metabolites comprising phospholipids (PL), amino acids, non-esterified fatty acids (NEFA), organic acids, acyl carnitines (AC), and Krebs cycle metabolites in maternal plasma at delivery and cord plasma obtained from 325 PREOBE study participants.

Results

Several metabolites were associated with pBMI/GDM in both maternal and cord blood (p < 0.05), while others were specific to either blood sources. BMI was positively associated with leucine, isoleucine, and inflammation markers in both mother and offspring, while β-hydroxybutyric acid was positively associated only in cord blood. GDM showed elevated levels of sum of hexoses, a characteristic finding in both maternal and cord blood. Uniquely in cord blood of offspring born to GDM mothers, free carnitine was significantly lower with the same tendency observed for AC, long-chain NEFA, PL, specific Krebs cycle metabolites, and β-oxidation markers.

Conclusions

Maternal BMI and GDM are associated with maternal and cord blood metabolites supporting the hypothesis of transgenerational cycle of obesity and diabetes.

Keywords

Gestational diabetes Intrauterine environment Maternal obesity Maternal phenotypes Metabolomics 

Notes

Acknowledgements

The authors thank the study participants, the obstetricians, paediatricians and technicians of the EURISTIKOS team, and the PREOBE team at the University of Granada. We are grateful to Stephanie Winterstetter, Alexander Haag and Tina Honsowitz for their support in the analysis. The data presented are part of the PhD thesis by Linda Marchioro at the Medical Faculty, LMU.

Funding

This work was supported by Andalusian Ministry of Economy, Science and Innovation, PREOBE Excellence Project (Ref. P06-CTS-02341), Spanish Ministry of Economy and Competitiveness (Ref. BFU2012-40254-C03-01 and Ref. SAF2015-69265-C2-2-R), the European Research Council Advanced Grant META-GROWTH (ERC-2012-AdG 322605), European Commission research projects EarlyNutrition, FP7-FP7 KBBE-2011-1 (289346 y) and Horizon2020 DynaHEALTH (633595).

Compliance with ethical standards

Conflict of interest

None of the authors reports conflicts of interest.

Ethical approval

All procedures followed were in accordance with the ethical standards of the bioethical Committees for clinical research of the Clinical University Hospital San Cecilio, the Mother-Infant University Hospital of Granada, and with the Helsinki Declaration of 1975, as revised in 2008.

Informed consent

Written informed consent was obtained from all participants at the study entry.

Supplementary material

592_2019_1291_MOESM1_ESM.docx (290 kb)
Supplementary material 1 (DOCX 290 KB)
592_2019_1291_MOESM2_ESM.docx (69 kb)
Supplementary material 2 (DOCX 68 KB)

References

  1. 1.
    NCD Risk Factor Collaboration (2017) Worldwide trends in body-mass index, underweight, overweight, and obesity from 1975 to 2016: a pooled analysis of 2416 population-based measurement studies in 128·9 million children, adolescents, and adults. Lancet 390(10113):2627–2642CrossRefGoogle Scholar
  2. 2.
    Huvinen E, Eriksson JG, Stach-Lempinen B, Tiitinen A, Koivusalo SB (2018) Heterogeneity of gestational diabetes (GDM) and challenges in developing a GDM risk score. Acta Diabetol 55(12):1251–1259CrossRefPubMedGoogle Scholar
  3. 3.
    Huvinen E, Eriksson JG, Koivusalo SB, Grotenfelt N, Tiitinen A, Stach-Lempinen B (2018) Heterogeneity of gestational diabetes (GDM) and long-term risk of diabetes and metabolic syndrome: findings from the RADIEL study follow-up. Acta Diabetol 55(12):1251–1259CrossRefPubMedGoogle Scholar
  4. 4.
    Lowe WL Jr, Bain JR, Nodzenski M (2017) Maternal BMI and glycemia impact the fetal metabolome. Diabet Care 40:902–910CrossRefGoogle Scholar
  5. 5.
    Kaaja R, Rönnemaa T (2008) Gestational diabetes: pathogenesis and consequences to mother and offspring. Rev Diab Stud 5(4):194–202CrossRefGoogle Scholar
  6. 6.
    Pintaudi B, Fresa R, Dalfrà M, Dodesini AR, Vitacolonna E, Tumminia A, Sciacca L, Lencioni C, Marcone T, Lucisano G, Nicolucci A, Bonomo M, Napoli A, STRONG Study Collaborators (2018) The risk stratification of adverse neonatal outcomes in women with gestational diabetes (STRONG) study. Acta Diabetol 55(12):1261–1273CrossRefPubMedGoogle Scholar
  7. 7.
    Leybovitz-Haleluya N, Wainstock T, Landau D, Sheiner E (2018) Maternal gestational diabetes mellitus and the risk of subsequent pediatric cardiovascular diseases of the offspring: a population-based cohort study with up to 18 years of follow up. Acta Diabetol 55(10):1037–1042CrossRefPubMedGoogle Scholar
  8. 8.
    Berglund SK, García-Valdés L, Torres-Espinola FJ, Segura MT, Martínez-Zaldívar C, Aguilar MJ, Agil A, Lorente JA, Florido J, Padilla C, Altmäe S, Marcos A, López-Sabater MC, Campoy C, PREOBE Team (2016) Maternal, fetal and perinatal alterations associated with obesity, overweight and gestational diabetes: an observational cohort study (PREOBE). BMC Public Health 16:207CrossRefPubMedPubMedCentralGoogle Scholar
  9. 9.
    International Association of Diabetes and Pregnancy Study Groups Consensus Panel, Metzger BE, Gabbe SG, Persson B, Buchanan TA, Catalano PA, Damm P, Dyer AR, Leiva A, Hod M, Kitzmiler JL, Lowe LP, McIntyre HD, Oats JJ, Omori Y, Schmidt MI (2010) International association of diabetes and pregnancy study groups recommendations on the diagnosis and classification of hyperglycemia in pregnancy. Diabetes Care 33(3): 676–682CrossRefPubMedCentralGoogle Scholar
  10. 10.
    Hellmuth C, Weber M, Koletzko B, Peissner W (2012) Nonesterified fatty acid determination for functional lipidomics. Comprehensive ultrahigh performance liquid chromatography–tandem mass spectrometry quantitation, qualification, and parameter prediction. Anal Chem 84:1483–1490CrossRefPubMedGoogle Scholar
  11. 11.
    Rauschert S, Uhl O, Koletzko B, Kirchberg F, Mori TA, Huang RC, Beilin LJ, Hellmuth C, Oddy WH (2016) Lipidomics reveals associations of phospholipids with obesity and insulin resistance in young adults. J Clin Endocrinol Metab 101:871–879CrossRefPubMedGoogle Scholar
  12. 12.
    Harder U, Koletzko B, Peissner W (2011) Quantification of 22 plasma amino acids combining derivatization and ion-pair LC–MS/MS. J Chromatogr B Analyt Technol Biomed Life Sci 879:495–504CrossRefPubMedGoogle Scholar
  13. 13.
    Maeba R, Hara H (2012) Serum choline plasmalogen is a reliable biomarker for atherogenic status. In: Squeri A (ed) Coronary artery disease—new insights and novel approaches. InTech, Rijeka, pp 243–260Google Scholar
  14. 14.
    Zhang W, Sun G, Aitken D, Likhodii S, Liu M, Martin G, Furey A, Randell E, Rahman P, Jones G, Zhai G (2016) Lysophosphatidylcholines to phosphatidylcholines ratio predicts advanced knee osteoarthritis. Rheumatol 55(9):1566–1574CrossRefGoogle Scholar
  15. 15.
    Pickens CA, Vazquez AI, Daniel Jones A, Fenton JI (2017) Obesity, adipokines, and C-peptide are associated with distinct plasma and phospholipid profiles in adult males, an untargeted lipidomic approach. Sci Rep 7:6335CrossRefPubMedPubMedCentralGoogle Scholar
  16. 16.
    Kirchberg FF, Brandt S, Moß A, Peissner W, Koenig W, Rothenbacher D, Brenner H, Koletzko B, Hellmuth C, Wabitsch M (2017) Metabolomics reveals an entanglement of fasting leptin concentrations with fatty acid oxidation and gluconeogenesis in healthy children. PLoS One 12(8):e0183185CrossRefPubMedPubMedCentralGoogle Scholar
  17. 17.
    Sampath H, Ntambi JM (2008) Role of stearoyl-CoA desaturase in human metabolic disease. Future Lipidol 3:163–173CrossRefGoogle Scholar
  18. 18.
    Myatt L, Powell T, Brown L et al (2010) Part I. nutritional regulation and requirements for pregnancy and fetal growth. In: Symonds ME, Ramsay M (eds) Maternal–fetal nutrition during pregnancy and lactation. Cambridge University Press, Cambridge, p 16Google Scholar
  19. 19.
    Butte NF, Liu Y, Zakeri IF, Mohney RP, Mehta N, Voruganti VS, Göring H, Cole SA, Comuzzie AG (2015) Global metabolomic profiling targeting childhood obesity in the Hispanic population. Am J Clin Nutr 102(2):256–267CrossRefPubMedPubMedCentralGoogle Scholar
  20. 20.
    Newgard CB (2012) Interplay between lipids and branched-chain amino acids in development of insulin resistance. Cell metab 15(5):606–614CrossRefPubMedPubMedCentralGoogle Scholar
  21. 21.
    Sandler V, Reisetter AC, Bain JR, Muehlbauer MJ, Nodzenski M, Stevens RD, Ilkayeva O, Lowe LP, Metzger BE, Newgard CB, Scholtens DM, Lowe WL Jr, HAPO Study Cooperative Research Group (2017) Association of maternal BMI and insulin resistance with the maternal metabolome and newborn outcomes. Diabetologia 60:518–530CrossRefPubMedGoogle Scholar
  22. 22.
    Jansson N, Rosario FJ, Gaccioli F, Lager S, Jones HN, Roos S, Jansson T, Powell TL (2013) Activation of placental mtor signaling and amino acid transporters in obese women giving birth to large babies. J Clin Endocrinol Metab 98:105–113CrossRefPubMedGoogle Scholar
  23. 23.
    Lindsay KL, Hellmuth C, Uhl O, Buss C, Wadhwa PD, Koletzko B, Entringer S (2015) Longitudinal metabolomic profiling of amino acids and lipids across healthy pregnancy. PLoS One 10:e0145794CrossRefPubMedPubMedCentralGoogle Scholar
  24. 24.
    Marseglia L, Manti S, D’Angelo G, Nicotera A, Parisi E, Di Rosa G, Gitto E, Arrigo T (2015) Oxidative stress in obesity: a critical component in human diseases. Int J Mol Sci 16:378–400CrossRefGoogle Scholar
  25. 25.
    Zeitoun-Ghandour S, Leszczyszyn OI, Blindauer CA, Geier FM, Bundy JG, Stürzenbaum SR (2011) C. elegans metallothioneins: response to and defence against ROS toxicity. Mol Biosyst 7(8):2397–2406CrossRefPubMedGoogle Scholar
  26. 26.
    Gao X, Zhang W, Yongbo W, Pedram P, Cahill F, Zhai G, Randell EW, Gulliver WP, Sun G (2016) Serum metabolic biomarkers distinguish metabolically healthy peripherally obese from unhealthy centrally obese individuals. Nutr Metab 13:33CrossRefGoogle Scholar
  27. 27.
    Kim JY, Park JY, Kim OY, Ham BM, Kim HJ, Kwon DY, Jang Y, Lee JH (2010) Metabolic profiling of plasma in overweight/obese and lean men using ultra performance liquid chromatography and Q-TOF mass spectrometry (UPLC-Q-TOF MS). J Proteome Res 9:4368–4375CrossRefPubMedGoogle Scholar
  28. 28.
    Dudzik D, Zorawski M, Skotnicki M, Zarzycki W, Kozlowska G, Bibik-Malinowska K, Vallejo M, García A, Barbas C, Ramos MP (2014) Metabolic fingerprint of gestational diabetes mellitus. J Proteom 103:57–71CrossRefGoogle Scholar
  29. 29.
    Curcic S, Holzer M, Pasterk L, Knuplez E, Eichmann TO, Frank S, Zimmermann R, Schicho R, Heinemann A, Marsche G (2017) Secretory phospholipase A2 modifed HDL rapidly and potently suppresses platelet activation. Sci Rep 7:8030CrossRefPubMedPubMedCentralGoogle Scholar
  30. 30.
    Hellmuth C, Lindsay KL, Uhl O (2017) Association of maternal prepregnancy BMI with metabolomic profile across gestation. Int J Obes (Lond) 41(1):159–169CrossRefGoogle Scholar
  31. 31.
    Herrera E (2002) Lipid metabolism in pregnancy and its consequences in the fetus and newborn. Endocrine 19(1):43–55CrossRefPubMedGoogle Scholar
  32. 32.
    Scholtens DM, Muehlbauer MJ, Daya NR, Stevens RD, Dyer AR, Lowe LP, Metzger BE, Newgard CB, Bain JR, Lowe WL Jr, HAPO Study Cooperative Research Group (2014) Metabolomics reveals broad-scale metabolic perturbations in hyperglycemic mothers during pregnancy. Diabetes Care 37(1):158–166CrossRefPubMedGoogle Scholar
  33. 33.
    Day PE, Cleal JK, Lofthouse EM, Hanson MA, Lewis RM (2013) What factors determine placental glucose transfer kinetics? Placenta 34:953–958CrossRefPubMedPubMedCentralGoogle Scholar
  34. 34.
    Gaither K, Quraishi AN, Illsley NP (1999) Diabetes alters the expression and activity of the human placental GLUT1 glucose transporter. J Clin Endocrinol Metab 84:695–701PubMedGoogle Scholar
  35. 35.
    Obeid R, Herrmann W (2009) Homocysteine and lipids: S-adenosyl methionine as a key intermediate. FEBS Lett 583:1215–1225CrossRefPubMedGoogle Scholar
  36. 36.
    Li Z, Agellon LB, Allen TM, Umeda M, Jewell L, Mason A, Vance DE (2006) The ratio of phosphatidylcholine to phosphatidylethanolamine influences membrane integrity and steatohepatitis. Cell Metab 3(5):321–331CrossRefPubMedGoogle Scholar
  37. 37.
    Braverman NE, Moser AB (2012) Review Functions of plasmalogen lipids in health and disease. Biochim Biophys Acta 1822(9):1442–1452CrossRefPubMedGoogle Scholar
  38. 38.
    Allalou A, Nalla A, Prentice KJ (2016) A predictive metabolic signature for the transition from gestational diabetes mellitus to type 2 diabetes. Diabetes 65:2529–2539CrossRefPubMedPubMedCentralGoogle Scholar
  39. 39.
    Evangeliou A, Gourgiotis D, Kragianni C, Markouri M, Anogianaki N, Mamoulakis D, Maropoulos G, Tsakalidis C, Frentzayias A, Nicolaidou P (2010) Carnitine status and lactate increase in patients with type I juvenile diabetes. Minerva Pediatr 62(6):551–557PubMedGoogle Scholar
  40. 40.
    Pappa KI, Anagnou NP, Salamalekis E, Bikouvarakis S, Maropoulos G, Anogianaki N, Evangeliou A, Koumantakis E (2005) Gestational diabetes exhibits lack of carnitine deficiency despite relatively low carnitine levels and alterations in ketogenesis. J Matern Fetal Neonatal Med 17:63–68CrossRefPubMedGoogle Scholar
  41. 41.
    Agakidou E, Diamanti E, Papoulidis I, Papakonstantinou E, Stergioudas I, Sarafidis K, Drossou V, Evangeliou A (2013) Effect of gestational diabetes on circulating levels of maternal and neonatal carnitine. J Diabetes Metab 4:250CrossRefGoogle Scholar
  42. 42.
    Visiedo F, Bugatto F, Sanchez V, Cozar-Castellano I, Bartha JL, Perdomo G (2013) High glucose levels reduce fatty acid oxidation and increase triglyceride accumulation in human placenta. Am J Physiol Endocrinol Metab 305:E205–E212CrossRefPubMedGoogle Scholar
  43. 43.
    Lackey DE, Lynch CJ, Olson KC, Mostaedi R, Ali M, Smith WH, Karpe F, Humphreys S, Bedinger DH, Dunn TN, Thomas AP, Oort PJ, Kieffer DA, Amin R, Bettaieb A, Haj FG, Permana P, Anthony TG, Adams SH (2013) Regulation of adipose branched-chain amino acid catabolism enzyme expression and cross-adipose amino acid flux in human obesity. Am J Physiol Endocrinol Metab 304:E1175–E1187CrossRefPubMedPubMedCentralGoogle Scholar
  44. 44.
    Crawford SO, Hoogeveen RC, Brancati FL, Astor BC, Ballantyne CM, Schmidt MI, Young JF (2010) Association of blood lactate with type 2 diabetes: the Atherosclerosis Risk in Communities Carotid MRI Study. Int J Epidemiol 39(6):1647–1655CrossRefPubMedPubMedCentralGoogle Scholar
  45. 45.
    Wu Y, Dong Y, Atefi M, Liu Y, Elshimali Y, Vadgama JV (2016) Lactate, a neglected factor for diabetes and cancer interaction. Mediators Inflamm 2016:6456018Google Scholar

Copyright information

© Springer-Verlag Italia S.r.l., part of Springer Nature 2019

Authors and Affiliations

  1. 1.Division of Metabolic and Nutritional Medicine, Dr. von Hauner Children’s HospitalLMU-Ludwig-Maximilians-Universität München, University of Munich Medical CentreMunichGermany
  2. 2.Department of Paediatrics, School of Medicine, EURISTIKOS Excellence Centre for Paediatric ResearchUniversity of GranadaGranadaSpain

Personalised recommendations