Advertisement

Acta Diabetologica

, Volume 55, Issue 8, pp 763–779 | Cite as

Post-transplantation diabetes in kidney transplant recipients: an update on management and prevention

  • Caterina Conte
  • Antonio Secchi
Review Article
  • 356 Downloads

Abstract

Post-transplantation diabetes mellitus (PTDM) may severely impact both short- and long-term outcomes of kidney transplant recipients in terms of graft and patient survival. However, PTDM often goes undiagnosed is underestimated or poorly managed. A diagnosis of PTDM should be delayed until the patient is on stable maintenance doses of immunosuppressive drugs, with stable kidney graft function and in the absence of acute infections. Risk factors for PTDM should be assessed during the pre-transplant evaluation period, in order to reduce the likelihood of developing diabetes. The oral glucose tolerance test is considered as the gold standard for diagnosing PTDM, whereas HbA1c is not reliable during the first months after transplantation. Glycaemic targets should be individualised, and comorbidities such as dyslipidaemia and hypertension should be treated with drugs that have the least possible impact on glucose metabolism, at doses that do not interact with immunosuppressants. While insulin is the preferred agent for treating inpatient hyperglycaemia in the immediate post-transplantation period, little evidence is available to guide therapeutic choices in the management of PTDM. Metformin and incretins may offer some advantage over other glucose-lowering agents, particularly with respect to risk of hypoglycaemia and weight gain. Tailoring immunosuppressive regimens may be of help, although maintenance of good kidney function should be prioritised over prevention/treatment of PTDM. The aim of this narrative review is to provide an overview of the available evidence on management and prevention of PTDM, with a focus on the available therapeutic options.

Keywords

Kidney transplantation Insulin resistance Post-transplantation diabetes Hyperglycaemia Obesity 

Notes

Compliance with ethical standards

Conflict of interest

The authors declare that they have no conflict of interest.

Ethical standard statement

No studies involving human participants nor experimental animals were conducted by the authors specifically for the preparation of this article.

Informed consent

For this type of study formal consent is not required.

References

  1. 1.
    Dienemann T, Fujii N, Li Y, Govani S, Kosaraju N, Bloom RD, Feldman HI (2016) Long-term patient survival and kidney allograft survival in post-transplant diabetes mellitus: a single-center retrospective study. Transpl Int 29(9):1017–1028.  https://doi.org/10.1111/tri.12807 PubMedCrossRefGoogle Scholar
  2. 2.
    Sharif A, Baboolal K (2011) Complications associated with new-onset diabetes after kidney transplantation. Nat Rev Nephrol 8(1):34–42.  https://doi.org/10.1038/nrneph.2011.174 PubMedCrossRefGoogle Scholar
  3. 3.
    Sheu A, Depczynski B, O’Sullivan AJ, Luxton G, Mangos G (2016) The effect of different glycaemic states on renal transplant outcomes. J Diabetes Res 2016:8735782.  https://doi.org/10.1155/2016/8735782 PubMedPubMedCentralCrossRefGoogle Scholar
  4. 4.
    Starzl TE (1964) Experience in renal transplantation. W. B. Saunders Company, PhiladelphiaGoogle Scholar
  5. 5.
    Arner P, Gunnarsson R, Blomdahl S, Groth CG (1983) Some characteristics of steroid diabetes: a study in renal-transplant recipients receiving high-dose corticosteroid therapy. Diabetes Care 6(1):23–25PubMedCrossRefGoogle Scholar
  6. 6.
    Hill CM, Douglas JF, Rajkumar KV, McEvoy J, McGeown MG (1974) Glycosuria and hyperglycaemia after kidney transplantation. Lancet 2(7879):490–492PubMedCrossRefGoogle Scholar
  7. 7.
    Baron PW, Infante S, Peters R, Tilahun J, Weissman J, Delgado L, Kore AH, Beeson WL, de Vera ME (2017) Post-transplant diabetes mellitus after kidney transplant in hispanics and caucasians treated with tacrolimus-based immunosuppression. Ann Transplant 22:309–314PubMedCrossRefGoogle Scholar
  8. 8.
    Cron DC, Noon KA, Cote DR, Terjimanian MN, Augustine JJ, Wang SC, Englesbe MJ, Woodside KJ (2017) Using analytic morphomics to describe body composition associated with post-kidney transplantation diabetes mellitus. Clin Transplant.  https://doi.org/10.1111/ctr.13040 CrossRefPubMedGoogle Scholar
  9. 9.
    Cullen TJ, McCarthy MP, Lasarev MR, Barry JM, Stadler DD (2014) Body mass index and the development of new-onset diabetes mellitus or the worsening of pre-existing diabetes mellitus in adult kidney transplant patients. J Ren Nutr 24(2):116–122.  https://doi.org/10.1053/j.jrn.2013.11.002 PubMedCrossRefGoogle Scholar
  10. 10.
    David-Neto E, Lemos FC, Fadel LM, Agena F, Sato MY, Coccuza C, Pereira LM, de Castro MC, Lando VS, Nahas WC, Ianhez LE (2007) The dynamics of glucose metabolism under calcineurin inhibitors in the first year after renal transplantation in nonobese patients. Transplantation 84(1):50–55.  https://doi.org/10.1097/01.tp.0000267647.03550.22 PubMedCrossRefGoogle Scholar
  11. 11.
    Hur KY, Kim MS, Kim YS, Kang ES, Nam JH, Kim SH, Nam CM, Ahn CW, Cha BS, Kim SI, Lee HC (2007) Risk factors associated with the onset and progression of posttransplantation diabetes in renal allograft recipients. Diabetes Care 30(3):609–615.  https://doi.org/10.2337/dc06-1277 PubMedCrossRefGoogle Scholar
  12. 12.
    Kasiske BL, Snyder JJ, Gilbertson D, Matas AJ (2003) Diabetes mellitus after kidney transplantation in the United States. Am J Transplant 3(2):178–185PubMedCrossRefGoogle Scholar
  13. 13.
    Porrini E, Moreno JM, Osuna A, Benitez R, Lampreabe I, Diaz JM, Silva I, Dominguez R, Gonzalez-Cotorruelo J, Bayes B, Lauzurica R, Ibernon M, Moreso F, Delgado P, Torres A (2008) Prediabetes in patients receiving tacrolimus in the first year after kidney transplantation: a prospective and multicenter study. Transplantation 85(8):1133–1138.  https://doi.org/10.1097/TP.0b013e31816b16bd PubMedCrossRefGoogle Scholar
  14. 14.
    Cosio FG, Pesavento TE, Osei K, Henry ML, Ferguson RM (2001) Post-transplant diabetes mellitus: increasing incidence in renal allograft recipients transplanted in recent years. Kidney Int 59(2):732–737.  https://doi.org/10.1046/j.1523-1755.2001.059002732.x PubMedCrossRefGoogle Scholar
  15. 15.
    Luan FL, Steffick DE, Ojo AO (2011) New-onset diabetes mellitus in kidney transplant recipients discharged on steroid-free immunosuppression. Transplantation 91(3):334–341.  https://doi.org/10.1097/TP.0b013e318203c25f PubMedCrossRefGoogle Scholar
  16. 16.
    Shin J, Palta M, Djamali A, Astor BC (2017) Higher pretransplantation hemoglobin A1c is associated with greater risk of posttransplant diabetes mellitus. Kidney Int Rep 2(6):1076–1087.  https://doi.org/10.1016/j.ekir.2017.06.006 PubMedPubMedCentralCrossRefGoogle Scholar
  17. 17.
    Sharif A, Hecking M, de Vries AP, Porrini E, Hornum M, Rasoul-Rockenschaub S, Berlakovich G, Krebs M, Kautzky-Willer A, Schernthaner G, Marchetti P, Pacini G, Ojo A, Takahara S, Larsen JL, Budde K, Eller K, Pascual J, Jardine A, Bakker SJ, Valderhaug TG, Jenssen TG, Cohney S, Saemann MD (2014) Proceedings from an international consensus meeting on posttransplantation diabetes mellitus: recommendations and future directions. Am J Transplant 14(9):1992–2000.  https://doi.org/10.1111/ajt.12850 PubMedPubMedCentralCrossRefGoogle Scholar
  18. 18.
    Hjelmesaeth J, Hartmann A, Leivestad T, Holdaas H, Sagedal S, Olstad M, Jenssen T (2006) The impact of early-diagnosed new-onset post-transplantation diabetes mellitus on survival and major cardiac events. Kidney Int 69(3):588–595.  https://doi.org/10.1038/sj.ki.5000116 PubMedCrossRefGoogle Scholar
  19. 19.
    de Mattos AM, Olyaei AJ, Prather JC, Golconda MS, Barry JM, Norman DJ (2005) Autosomal-dominant polycystic kidney disease as a risk factor for diabetes mellitus following renal transplantation. Kidney Int 67(2):714–720.  https://doi.org/10.1111/j.1523-1755.2005.67132.x PubMedCrossRefGoogle Scholar
  20. 20.
    Hamer RA, Chow CL, Ong AC, McKane WS (2007) Polycystic kidney disease is a risk factor for new-onset diabetes after transplantation. Transplantation 83(1):36–40.  https://doi.org/10.1097/01.tp.0000248759.37146.3d PubMedCrossRefGoogle Scholar
  21. 21.
    Benson KA, Maxwell AP, McKnight AJ (2016) A HuGE review and meta-analyses of genetic associations in new onset diabetes after kidney transplantation. PLoS ONE 11(1):e0147323.  https://doi.org/10.1371/journal.pone.0147323 PubMedPubMedCentralCrossRefGoogle Scholar
  22. 22.
    Lv C, Chen M, Xu M, Xu G, Zhang Y, He S, Xue M, Gao J, Yu M, Gao X, Zhu T (2014) Influencing factors of new-onset diabetes after a renal transplant and their effects on complications and survival rate. PLoS ONE 9(6):e99406.  https://doi.org/10.1371/journal.pone.0099406 PubMedPubMedCentralCrossRefGoogle Scholar
  23. 23.
    Sharif A, Cohney S (2016) Post-transplantation diabetes-state of the art. Lancet Diabetes Endocrinol 4(4):337–349.  https://doi.org/10.1016/S2213-8587(15)00387-3 PubMedCrossRefGoogle Scholar
  24. 24.
    Le Fur A, Fournier MC, Gillaizeau F, Masson D, Giral M, Cariou B, Cantarovich D, Dantal J (2016) Vitamin D deficiency is an independent risk factor for PTDM after kidney transplantation. Transpl Int 29(2):207–215.  https://doi.org/10.1111/tri.12697 PubMedCrossRefGoogle Scholar
  25. 25.
    Hwang JL, Weiss RE (2014) Steroid-induced diabetes: a clinical and molecular approach to understanding and treatment. Diabetes Metab Res Rev 30(2):96–102.  https://doi.org/10.1002/dmrr.2486 PubMedPubMedCentralCrossRefGoogle Scholar
  26. 26.
    Ciancio G, Burke GW, Gaynor JJ, Ruiz P, Roth D, Kupin W, Rosen A, Miller J (2006) A randomized long-term trial of tacrolimus/sirolimus versus tacrolimums/mycophenolate versus cyclosporine/sirolimus in renal transplantation: three-year analysis. Transplantation 81(6):845–852.  https://doi.org/10.1097/01.tp.0000203894.53714.27 PubMedCrossRefGoogle Scholar
  27. 27.
    Ekberg H, Bernasconi C, Noldeke J, Yussim A, Mjornstedt L, Erken U, Ketteler M, Navratil P (2010) Cyclosporine, tacrolimus and sirolimus retain their distinct toxicity profiles despite low doses in the symphony study. Nephrol Dial Transplant 25(6):2004–2010.  https://doi.org/10.1093/ndt/gfp778 PubMedCrossRefGoogle Scholar
  28. 28.
    Laskow DA, Vincenti F, Neylan JF, Mendez R, Matas AJ (1996) An open-label, concentration-ranging trial of FK506 in primary kidney transplantation: a report of the United States Multicenter FK506 Kidney Transplant Group. Transplantation 62(7):900–905PubMedCrossRefGoogle Scholar
  29. 29.
    Vincenti F, Friman S, Scheuermann E, Rostaing L, Jenssen T, Campistol JM, Uchida K, Pescovitz MD, Marchetti P, Tuncer M, Citterio F, Wiecek A, Chadban S, El-Shahawy M, Budde K, Goto N, Investigators D (2007) Results of an international, randomized trial comparing glucose metabolism disorders and outcome with cyclosporine versus tacrolimus. Am J Transplant 7(6):1506–1514.  https://doi.org/10.1111/j.1600-6143.2007.01749.x PubMedCrossRefGoogle Scholar
  30. 30.
    Woodward RS, Schnitzler MA, Baty J, Lowell JA, Lopez-Rocafort L, Haider S, Woodworth TG, Brennan DC (2003) Incidence and cost of new onset diabetes mellitus among U.S. wait-listed and transplanted renal allograft recipients. Am J Transplant 3(5):590–598PubMedCrossRefGoogle Scholar
  31. 31.
    Chakkera HA, Kudva Y, Kaplan B (2017) Calcineurin inhibitors: pharmacologic mechanisms impacting both insulin resistance and insulin secretion leading to glucose dysregulation and diabetes mellitus. Clin Pharmacol Ther 101(1):114–120.  https://doi.org/10.1002/cpt.546 PubMedCrossRefGoogle Scholar
  32. 32.
    Verges B (2017) mTOR and cardiovascular diseases: diabetes mellitus. Transplantation.  https://doi.org/10.1097/TP.0000000000001722 CrossRefGoogle Scholar
  33. 33.
    Huber M, Kemmner S, Renders L, Heemann U (2016) Should belatacept be the centrepiece of renal transplantation? Nephrol Dial Transplant 31(12):1995–2002.  https://doi.org/10.1093/ndt/gfw226 PubMedCrossRefGoogle Scholar
  34. 34.
    Montero N, Pascual J (2015) Immunosuppression and post-transplant hyperglycemia. Curr Diabetes Rev 11(3):144–154PubMedCrossRefGoogle Scholar
  35. 35.
    Gallo R, Natale M, Vendrame F, Boggi U, Filipponi F, Marchetti P, Laghi Pasini F, Dotta F (2012) In vitro effects of mycophenolic acid on survival, function, and gene expression of pancreatic beta-cells. Acta Diabetol 49(Suppl 1):S123–S131.  https://doi.org/10.1007/s00592-011-0368-8 PubMedCrossRefGoogle Scholar
  36. 36.
    Hill P, Cross NB, Barnett AN, Palmer SC, Webster AC (2017) Polyclonal and monoclonal antibodies for induction therapy in kidney transplant recipients. Cochrane Database Syst Rev 1:CD004759.  https://doi.org/10.1002/14651858.cd004759.pub2 PubMedCrossRefGoogle Scholar
  37. 37.
    Chakkera HA, Weil EJ, Castro J, Heilman RL, Reddy KS, Mazur MJ, Hamawi K, Mulligan DC, Moss AA, Mekeel KL, Cosio FG, Cook CB (2009) Hyperglycemia during the immediate period after kidney transplantation. Clin J Am Soc Nephrol CJASN 4(4):853–859.  https://doi.org/10.2215/CJN.05471008 PubMedCrossRefGoogle Scholar
  38. 38.
    Hecking M, Haidinger M, Doller D, Werzowa J, Tura A, Zhang J, Tekoglu H, Pleiner J, Wrba T, Rasoul-Rockenschaub S, Muhlbacher F, Schmaldienst S, Druml W, Horl WH, Krebs M, Wolzt M, Pacini G, Port FK, Saemann MD (2012) Early basal insulin therapy decreases new-onset diabetes after renal transplantation. J Am Soc Nephrology JASN 23(4):739–749.  https://doi.org/10.1681/ASN.2011080835 CrossRefGoogle Scholar
  39. 39.
    Chakkera HA, Knowler WC, Devarapalli Y, Weil EJ, Heilman RL, Dueck A, Mulligan DC, Reddy KS, Moss AA, Mekeel KL, Mazur MJ, Hamawi K, Castro JC, Cook CB (2010) Relationship between inpatient hyperglycemia and insulin treatment after kidney transplantation and future new onset diabetes mellitus. Clin J Am Soc Nephrol CJASN 5(9):1669–1675.  https://doi.org/10.2215/CJN.09481209 PubMedCrossRefGoogle Scholar
  40. 40.
    Kuypers DR, Claes K, Bammens B, Evenepoel P, Vanrenterghem Y (2008) Early clinical assessment of glucose metabolism in renal allograft recipients: diagnosis and prediction of post-transplant diabetes mellitus (PTDM). Nephrol Dial Transplant 23(6):2033–2042.  https://doi.org/10.1093/ndt/gfm875 PubMedCrossRefGoogle Scholar
  41. 41.
    Association AD (2018) Standards of Medical Care in Diabetes—2018. Diabetes Care 41(Supplement 1):S1–S159CrossRefGoogle Scholar
  42. 42.
    Valderhaug TG, Jenssen T, Hartmann A, Midtvedt K, Holdaas H, Reisaeter AV, Hjelmesaeth J (2009) Fasting plasma glucose and glycosylated hemoglobin in the screening for diabetes mellitus after renal transplantation. Transplantation 88(3):429–434.  https://doi.org/10.1097/TP.0b013e3181af1f53 PubMedCrossRefGoogle Scholar
  43. 43.
    Cosio FG, Kudva Y, van der Velde M, Larson TS, Textor SC, Griffin MD, Stegall MD (2005) New onset hyperglycemia and diabetes are associated with increased cardiovascular risk after kidney transplantation. Kidney Int 67(6):2415–2421.  https://doi.org/10.1111/j.1523-1755.2005.00349.x PubMedCrossRefGoogle Scholar
  44. 44.
    Valderhaug TG, Hjelmesaeth J, Hartmann A, Roislien J, Bergrem HA, Leivestad T, Line PD, Jenssen T (2011) The association of early post-transplant glucose levels with long-term mortality. Diabetologia 54(6):1341–1349.  https://doi.org/10.1007/s00125-011-2105-9 PubMedPubMedCentralCrossRefGoogle Scholar
  45. 45.
    Pimentel AL, Cavagnolli G, Camargo JL (2017) Diagnostic accuracy of glycated hemoglobin for post-transplantation diabetes mellitus after kidney transplantation: systematic review and meta-analysis. Nephrol Dial Transplant 32(3):565–572.  https://doi.org/10.1093/ndt/gfw437 PubMedCrossRefGoogle Scholar
  46. 46.
    Ekstrand AV, Eriksson JG, Gronhagen-Riska C, Ahonen PJ, Groop LC (1992) Insulin resistance and insulin deficiency in the pathogenesis of posttransplantation diabetes in man. Transplantation 53(3):563–569PubMedCrossRefGoogle Scholar
  47. 47.
    Hagen M, Hjelmesaeth J, Jenssen T, Morkrid L, Hartmann A (2003) A 6-year prospective study on new onset diabetes mellitus, insulin release and insulin sensitivity in renal transplant recipients. Nephrol Dial Transplant 18(10):2154–2159.  https://doi.org/10.1093/ndt/gfg338 PubMedCrossRefGoogle Scholar
  48. 48.
    Hecking M, Kainz A, Werzowa J, Haidinger M, Doller D, Tura A, Karaboyas A, Horl WH, Wolzt M, Sharif A, Roden M, Moro E, Pacini G, Port FK, Saemann MD (2013) Glucose metabolism after renal transplantation. Diabetes Care 36(9):2763–2771.  https://doi.org/10.2337/dc12-2441 PubMedPubMedCentralCrossRefGoogle Scholar
  49. 49.
    Nam JH, Mun JI, Kim SI, Kang SW, Choi KH, Park K, Ahn CW, Cha BS, Song YD, Lim SK, Kim KR, Lee HC, Huh KB (2001) beta-Cell dysfunction rather than insulin resistance is the main contributing factor for the development of postrenal transplantation diabetes mellitus. Transplantation 71(10):1417–1423PubMedCrossRefGoogle Scholar
  50. 50.
    Jorgensen MB, Hornum M, van Hall G, Bistrup C, Hansen JM, Mathiesen ER, Feldt-Rasmussen B (2017) The impact of kidney transplantation on insulin sensitivity. Transpl Int 30(3):295–304.  https://doi.org/10.1111/tri.12907 PubMedCrossRefGoogle Scholar
  51. 51.
    Ramirez SC, Maaske J, Kim Y, Neagu V, DeLange S, Mazhari A, Gao W, Emanuele MA, Emanuele N, Baldwin D, Mihailescu DV (2014) The association between glycemic control and clinical outcomes after kidney transplantation. Endocr Pract 20(9):894–900.  https://doi.org/10.4158/EP13463.or PubMedCrossRefGoogle Scholar
  52. 52.
    Hermayer KL, Egidi MF, Finch NJ, Baliga P, Lin A, Kettinger L, Biggins S, Carter RE (2012) A randomized controlled trial to evaluate the effect of glycemic control on renal transplantation outcomes. J Clin Endocrinol Metab 97(12):4399–4406.  https://doi.org/10.1210/jc.2012-1979 PubMedCrossRefGoogle Scholar
  53. 53.
    Kidney Disease: Improving Global Outcomes Transplant Work G (2009) KDIGO clinical practice guideline for the care of kidney transplant recipients. Am J Transplant 9(Suppl 3):S1–S155.  https://doi.org/10.1111/j.1600-6143.2009.02834.x CrossRefGoogle Scholar
  54. 54.
    American Diabetes Association (2017) 6. Glycemic targets. Diabetes Care 40(Suppl 1):S48–S56.  https://doi.org/10.2337/dc17-s009 CrossRefGoogle Scholar
  55. 55.
    Burroughs TE, Swindle J, Takemoto S, Lentine KL, Machnicki G, Irish WD, Brennan DC, Schnitzler MA (2007) Diabetic complications associated with new-onset diabetes mellitus in renal transplant recipients. Transplantation 83(8):1027–1034.  https://doi.org/10.1097/01.tp.0000259617.21741.95 PubMedCrossRefGoogle Scholar
  56. 56.
    Dela F, von Linstow ME, Mikines KJ, Galbo H (2004) Physical training may enhance beta-cell function in type 2 diabetes. Am J Physiol Endocrinol Metab 287(5):E1024–E1031.  https://doi.org/10.1152/ajpendo.00056.2004 PubMedCrossRefGoogle Scholar
  57. 57.
    Solomon TP, Haus JM, Kelly KR, Rocco M, Kashyap SR, Kirwan JP (2010) Improved pancreatic beta-cell function in type 2 diabetic patients after lifestyle-induced weight loss is related to glucose-dependent insulinotropic polypeptide. Diabetes Care 33(7):1561–1566.  https://doi.org/10.2337/dc09-2021 PubMedPubMedCentralCrossRefGoogle Scholar
  58. 58.
    Klaassen G, Zelle DM, Navis GJ, Dijkema D, Bemelman FJ, Bakker SJL, Corpeleijn E (2017) Lifestyle intervention to improve quality of life and prevent weight gain after renal transplantation: design of the active care after transplantation (ACT) randomized controlled trial. BMC Nephrol 18(1):296.  https://doi.org/10.1186/s12882-017-0709-0 PubMedPubMedCentralCrossRefGoogle Scholar
  59. 59.
    Pedrollo EF, Nicoletto BB, Carpes LS, de Freitas JMC, Buboltz JR, Forte CC, Bauer AC, Manfro RC, Souza GC, Leitao CB (2017) Effect of an intensive nutrition intervention of a high protein and low glycemic-index diet on weight of kidney transplant recipients: study protocol for a randomized clinical trial. Trials 18(1):413.  https://doi.org/10.1186/s13063-017-2158-2 PubMedCrossRefGoogle Scholar
  60. 60.
    Wilcox J, Waite C, Tomlinson L, Driscoll J, Karim A, Day E, Sharif A (2016) Comparing glycaemic benefits of active versus passive lifestyle Intervention in kidney allograft recipients (CAVIAR): study protocol for a randomised controlled trial. Trials 17:417.  https://doi.org/10.1186/s13063-016-1543-6 PubMedPubMedCentralCrossRefGoogle Scholar
  61. 61.
    Lo C, Jun M, Badve SV, Pilmore H, White SL, Hawley C, Cass A, Perkovic V, Zoungas S (2017) Glucose-lowering agents for treating pre-existing and new-onset diabetes in kidney transplant recipients. Cochrane Database Syst Rev 2:CD009966.  https://doi.org/10.1002/14651858.cd009966.pub2 PubMedCrossRefGoogle Scholar
  62. 62.
    American Diabetes Association (2017) 8. Pharmacologic Approaches to Glycemic Treatment. Diabetes Care 40(Suppl 1):S64–S74.  https://doi.org/10.2337/dc17-s011 CrossRefGoogle Scholar
  63. 63.
    Rena G, Hardie DG, Pearson ER (2017) The mechanisms of action of metformin. Diabetologia 60(9):1577–1585.  https://doi.org/10.1007/s00125-017-4342-z PubMedPubMedCentralCrossRefGoogle Scholar
  64. 64.
    European Medicines Agency (2016) Use of metformin to treat diabetes now expanded to patients with moderately reduced kidney function. Available at http://www.ema.europa.eu/docs/en_GB/document_library/Referrals_document/Metformin_31/WC500214235.pdf
  65. 65.
    Stephen J, Anderson-Haag TL, Gustafson S, Snyder JJ, Kasiske BL, Israni AK (2014) Metformin use in kidney transplant recipients in the United States: an observational study. Am J Nephrol 40(6):546–553.  https://doi.org/10.1159/000370034 PubMedCrossRefGoogle Scholar
  66. 66.
    Kurian B, Joshi R, Helmuth A (2008) Effectiveness and long-term safety of thiazolidinediones and metformin in renal transplant recipients. Endocr Pract 14(8):979–984.  https://doi.org/10.4158/EP.14.8.979 PubMedCrossRefGoogle Scholar
  67. 67.
    Vanhove T, Remijsen Q, Kuypers D, Gillard P (2017) Drug-drug interactions between immunosuppressants and antidiabetic drugs in the treatment of post-transplant diabetes mellitus. Transplant Rev 31(2):69–77.  https://doi.org/10.1016/j.trre.2016.09.001 CrossRefGoogle Scholar
  68. 68.
    Azoulay L, Suissa S (2017) Sulfonylureas and the risks of cardiovascular events and death: a methodological meta-regression analysis of the observational studies. Diabetes Care 40(5):706–714.  https://doi.org/10.2337/dc16-1943 PubMedCrossRefGoogle Scholar
  69. 69.
    Kahn SE, Haffner SM, Heise MA, Herman WH, Holman RR, Jones NP, Kravitz BG, Lachin JM, Oneill MC, Zinman B, Viberti G, Group AS (2006) Glycemic durability of rosiglitazone, metformin, or glyburide monotherapy. N Engl J Med 355(23):2427–2443.  https://doi.org/10.1056/nejmoa066224 PubMedCrossRefGoogle Scholar
  70. 70.
    Del Guerra S, Marselli L, Lupi R, Boggi U, Mosca F, Benzi L, Del Prato S, Marchetti P (2005) Effects of prolonged in vitro exposure to sulphonylureas on the function and survival of human islets. J Diabetes Complicat 19(1):60–64.  https://doi.org/10.1016/j.jdiacomp.2004.05.001 PubMedCrossRefGoogle Scholar
  71. 71.
    Maedler K, Carr RD, Bosco D, Zuellig RA, Berney T, Donath MY (2005) Sulfonylurea induced beta-cell apoptosis in cultured human islets. J Clin Endocrinol Metab 90(1):501–506.  https://doi.org/10.1210/jc.2004-0699 PubMedCrossRefGoogle Scholar
  72. 72.
    Scheen AJ (2013) Pharmacokinetic considerations for the treatment of diabetes in patients with chronic kidney disease. Exp Opin Drug Metab Toxicol 9(5):529–550.  https://doi.org/10.1517/17425255.2013.777428 CrossRefGoogle Scholar
  73. 73.
    Haidinger M, Antlanger M, Kopecky C, Kovarik JJ, Saemann MD, Werzowa J (2015) Post-transplantation diabetes mellitus: evaluation of treatment strategies. Clin Transplant 29(5):415–424.  https://doi.org/10.1111/ctr.12541 PubMedCrossRefGoogle Scholar
  74. 74.
    Tuerk TR, Bandur S, Nuernberger J, Kribben A, Mann K, Philipp T, Heemann U, Viklicky O, Witzke O (2008) Gliquidone therapy of new-onset diabetes mellitus after kidney transplantation. Clin Nephrol 70(1):26–32PubMedCrossRefGoogle Scholar
  75. 75.
    Turk T, Pietruck F, Dolff S, Kribben A, Janssen OE, Mann K, Philipp T, Heemann U, Witzke O (2006) Repaglinide in the management of new-onset diabetes mellitus after renal transplantation. Am J Transplant 6(4):842–846.  https://doi.org/10.1111/j.1600-6143.2006.01250.x PubMedCrossRefGoogle Scholar
  76. 76.
    Soccio RE, Chen ER, Lazar MA (2014) Thiazolidinediones and the promise of insulin sensitization in type 2 diabetes. Cell Metab 20(4):573–591.  https://doi.org/10.1016/j.cmet.2014.08.005 PubMedPubMedCentralCrossRefGoogle Scholar
  77. 77.
    Baldwin D Jr, Duffin KE (2004) Rosiglitazone treatment of diabetes mellitus after solid organ transplantation. Transplantation 77(7):1009–1014PubMedCrossRefGoogle Scholar
  78. 78.
    Luther P, Baldwin D Jr (2004) Pioglitazone in the management of diabetes mellitus after transplantation. Am J Transplant 4(12):2135–2138.  https://doi.org/10.1111/j.1600-6143.2004.00613.x PubMedCrossRefGoogle Scholar
  79. 79.
    Pietruck F, Kribben A, Van TN, Patschan D, Herget-Rosenthal S, Janssen O, Mann K, Philipp T, Witzke O (2005) Rosiglitazone is a safe and effective treatment option of new-onset diabetes mellitus after renal transplantation. Transpl Int 18(4):483–486.  https://doi.org/10.1111/j.1432-2277.2004.00076.x PubMedCrossRefGoogle Scholar
  80. 80.
    Villanueva G, Baldwin D (2005) Rosiglitazone therapy of posttransplant diabetes mellitus. Transplantation 80(10):1402–1405PubMedCrossRefGoogle Scholar
  81. 81.
    Naylor KL, Zou G, Leslie WD, Hodsman AB, Lam NN, McArthur E, Fraser LA, Knoll GA, Adachi JD, Kim SJ, Garg AX (2016) Risk factors for fracture in adult kidney transplant recipients. World J Transplant 6(2):370–379.  https://doi.org/10.5500/wjt.v6.i2.370 PubMedPubMedCentralCrossRefGoogle Scholar
  82. 82.
    Andersen ES, Deacon CF, Holst JJ (2018) Do we know the true mechanism of action of the DPP-4 inhibitors? Diabetes Obes Metab 20(1):34–41.  https://doi.org/10.1111/dom.13018 PubMedCrossRefGoogle Scholar
  83. 83.
    Sanyal D, Gupta S, Das P (2013) A retrospective study evaluating efficacy and safety of linagliptin in treatment of NODAT (in renal transplant recipients) in a real world setting. Indian J Endocrinol Metab 17(Suppl 1):S203–S205.  https://doi.org/10.4103/2230-8210.119572 PubMedPubMedCentralCrossRefGoogle Scholar
  84. 84.
    Strom Halden TA, Asberg A, Vik K, Hartmann A, Jenssen T (2014) Short-term efficacy and safety of sitagliptin treatment in long-term stable renal recipients with new-onset diabetes after transplantation. Nephrol Dial Transplant 29(4):926–933.  https://doi.org/10.1093/ndt/gft536 PubMedCrossRefGoogle Scholar
  85. 85.
    Haidinger M, Werzowa J, Hecking M, Antlanger M, Stemer G, Pleiner J, Kopecky C, Kovarik JJ, Doller D, Pacini G, Saemann MD (2014) Efficacy and safety of vildagliptin in new-onset diabetes after kidney transplantation–a randomized, double-blind, placebo-controlled trial. Am J Transplant 14(1):115–123.  https://doi.org/10.1111/ajt.12518 PubMedCrossRefGoogle Scholar
  86. 86.
    Meier JJ (2012) GLP-1 receptor agonists for individualized treatment of type 2 diabetes mellitus. Nat Rev Endocrinol 8(12):728–742.  https://doi.org/10.1038/nrendo.2012.140 PubMedCrossRefGoogle Scholar
  87. 87.
    Marso SP, Daniels GH, Brown-Frandsen K, Kristensen P, Mann JF, Nauck MA, Nissen SE, Pocock S, Poulter NR, Ravn LS, Steinberg WM, Stockner M, Zinman B, Bergenstal RM, Buse JB, Committee LS, Investigators LT (2016) Liraglutide and cardiovascular outcomes in type 2 diabetes. N Engl J Med 375(4):311–322.  https://doi.org/10.1056/NEJMoa1603827 PubMedPubMedCentralCrossRefGoogle Scholar
  88. 88.
    Halden TA, Egeland EJ, Asberg A, Hartmann A, Midtvedt K, Khiabani HZ, Holst JJ, Knop FK, Hornum M, Feldt-Rasmussen B, Jenssen T (2016) GLP-1 restores altered insulin and glucagon secretion in posttransplantation diabetes. Diabetes Care 39(4):617–624.  https://doi.org/10.2337/dc15-2383 PubMedCrossRefGoogle Scholar
  89. 89.
    Pinelli NR, Patel A, Salinitri FD (2013) Coadministration of liraglutide with tacrolimus in kidney transplant recipients: a case series. Diabetes Care 36(10):e171–e172.  https://doi.org/10.2337/dc13-1066 PubMedPubMedCentralCrossRefGoogle Scholar
  90. 90.
    Reddy M, Tawfik B, Gavva C, Yates S, De Simone N, Hofmann SL, Rambally S, Sarode R (2016) Ischemic stroke in a patient with moderate to severe inherited factor VII deficiency. Transfus Apheres Sci 55(3):364–367.  https://doi.org/10.1016/j.transci.2016.10.002 CrossRefGoogle Scholar
  91. 91.
    Wanner C, Inzucchi SE, Lachin JM, Fitchett D, von Eynatten M, Mattheus M, Johansen OE, Woerle HJ, Broedl UC, Zinman B, Investigators E-RO (2016) Empagliflozin and progression of kidney disease in type 2 diabetes. N Engl J Med 375(4):323–334.  https://doi.org/10.1056/NEJMoa1515920 PubMedCrossRefGoogle Scholar
  92. 92.
    Hahn K, Ejaz AA, Kanbay M, Lanaspa MA, Johnson RJ (2016) Acute kidney injury from SGLT2 inhibitors: potential mechanisms. Nat Rev Nephrol 12(12):711–712.  https://doi.org/10.1038/nrneph.2016.159 PubMedCrossRefGoogle Scholar
  93. 93.
    Puckrin R, Saltiel MP, Reynier P, Azoulay L, Yu OHY, Filion KB (2018) SGLT-2 inhibitors and the risk of infections: a systematic review and meta-analysis of randomized controlled trials. Acta Diabetol.  https://doi.org/10.1007/s00592-018-1116-0 PubMedCrossRefGoogle Scholar
  94. 94.
    Catapano AL, Graham I, De Backer G, Wiklund O, Chapman MJ, Drexel H, Hoes AW, Jennings CS, Landmesser U, Pedersen TR, Reiner Z, Riccardi G, Taskinen MR, Tokgozoglu L, Verschuren WM, Vlachopoulos C, Wood DA, Zamorano JL, Authors/Task Force M, Additional C (2016) 2016 ESC/EAS guidelines for the management of dyslipidaemias. Eur Heart J 37(39):2999–3058.  https://doi.org/10.1093/eurheartj/ehw272 PubMedCrossRefGoogle Scholar
  95. 95.
    Palmer SC, Navaneethan SD, Craig JC, Perkovic V, Johnson DW, Nigwekar SU, Hegbrant J, Strippoli GF (2014) HMG CoA reductase inhibitors (statins) for kidney transplant recipients. Cochrane Database Syst Rev.  https://doi.org/10.1002/14651858.cd005019.pub4 CrossRefPubMedGoogle Scholar
  96. 96.
    Wiggins BS, Saseen JJ, Page RL, 2nd, Reed BN, Sneed K, Kostis JB, Lanfear D, Virani S, Morris PB, American Heart Association Clinical Pharmacology Committee of the Council on Clinical C, Council on H, Council on Quality of C, Outcomes R, Council on Functional G, Translational B (2016) Recommendations for management of clinically significant drug-drug interactions with statins and select agents used in patients with cardiovascular disease: a scientific statement from the American Heart Association. Circulation 134(21):e468–e495.  https://doi.org/10.1161/cir.0000000000000456 PubMedCrossRefGoogle Scholar
  97. 97.
    Eisenga MF, Zelle DM, Sloan JH, Gaillard C, Bakker SJL, Dullaart RPF (2017) High serum pcsk9 is associated with increased risk of new-onset diabetes after transplantation in renal transplant recipients. Diabetes Care 40(7):894–901.  https://doi.org/10.2337/dc16-2258 PubMedCrossRefGoogle Scholar
  98. 98.
    Han E, Yun Y, Kim G, Lee YH, Wang HJ, Lee BW, Cha BS, Kim BS, Kang ES (2016) Effects of omega-3 fatty acid supplementation on diabetic nephropathy progression in patients with diabetes and hypertriglyceridemia. PLoS ONE 11(5):e0154683.  https://doi.org/10.1371/journal.pone.0154683 PubMedPubMedCentralCrossRefGoogle Scholar
  99. 99.
    Lim AK, Manley KJ, Roberts MA, Fraenkel MB (2016) Fish oil for kidney transplant recipients. Cochrane Database System Rev.  https://doi.org/10.1002/14651858.cd005282.pub3 CrossRefGoogle Scholar
  100. 100.
    Verbeke F, Lindley E, Van Bortel L, Vanholder R, London G, Cochat P, Wiecek A, Fouque D, Van Biesen W (2014) A European Renal best practice (ERBP) position statement on the kidney disease: improving global outcomes (KDIGO) clinical practice guideline for the management of blood pressure in non-dialysis-dependent chronic kidney disease: an endorsement with some caveats for real-life application. Nephrol Dial Transplant 29(3):490–496.  https://doi.org/10.1093/ndt/gft321 PubMedCrossRefGoogle Scholar
  101. 101.
    Cross NB, Webster AC, Masson P, O’Connell PJ, Craig JC (2009) Antihypertensive treatment for kidney transplant recipients. Cochrane Database Syst Rev.  https://doi.org/10.1002/14651858.cd003598.pub2 CrossRefPubMedGoogle Scholar
  102. 102.
    Cross NB, Webster AC (2016) Angiotensin-converting enzyme inhibitors-beneficial effects seen in many patient groups may not extend to kidney transplant recipients. Transplantation 100(3):472–473.  https://doi.org/10.1097/TP.0000000000001140 PubMedCrossRefGoogle Scholar
  103. 103.
    Fathallah N, Slim R, Larif S, Hmouda H, Ben Salem C (2015) Drug-induced hyperglycaemia and diabetes. Drug Saf 38(12):1153–1168.  https://doi.org/10.1007/s40264-015-0339-z PubMedCrossRefGoogle Scholar
  104. 104.
    Bergrem HA, Valderhaug TG, Hartmann A, Hjelmesaeth J, Leivestad T, Bergrem H, Jenssen T (2010) Undiagnosed diabetes in kidney transplant candidates: a case-finding strategy. Clin J Am Soc Nephrol CJASN 5(4):616–622.  https://doi.org/10.2215/CJN.07501009 PubMedCrossRefGoogle Scholar
  105. 105.
    Chakkera HA, Chang YH, Ayub A, Gonwa TA, Weil EJ, Knowler WC (2013) Validation of a pretransplant risk score for new-onset diabetes after kidney transplantation. Diabetes Care 36(10):2881–2886.  https://doi.org/10.2337/dc13-0428 PubMedPubMedCentralCrossRefGoogle Scholar
  106. 106.
    Chakkera HA, Weil EJ, Swanson CM, Dueck AC, Heilman RL, Reddy KS, Hamawi K, Khamash H, Moss AA, Mulligan DC, Katariya N, Knowler WC (2011) Pretransplant risk score for new-onset diabetes after kidney transplantation. Diabetes Care 34(10):2141–2145.  https://doi.org/10.2337/dc11-0752 PubMedPubMedCentralCrossRefGoogle Scholar
  107. 107.
    Caillard S, Eprinchard L, Perrin P, Braun L, Heibel F, Moreau F, Kessler L, Moulin B (2011) Incidence and risk factors of glucose metabolism disorders in kidney transplant recipients: role of systematic screening by oral glucose tolerance test. Transplantation 91(7):757–764.  https://doi.org/10.1097/TP.0b013e31820f0877 PubMedCrossRefGoogle Scholar
  108. 108.
    Bayer ND, Cochetti PT, Anil Kumar MS, Teal V, Huan Y, Doria C, Bloom RD, Rosas SE (2010) Association of metabolic syndrome with development of new-onset diabetes after transplantation. Transplantation 90(8):861–866.  https://doi.org/10.1097/TP.0b013e3181f1543c PubMedPubMedCentralCrossRefGoogle Scholar
  109. 109.
    Rodrigo E, Santos L, Pinera C, Millan JC, Quintela ME, Toyos C, Allende N, Gomez-Alamillo C, Arias M (2012) Prediction at first year of incident new-onset diabetes after kidney transplantation by risk prediction models. Diabetes Care 35(3):471–473.  https://doi.org/10.2337/dc11-2071 PubMedPubMedCentralCrossRefGoogle Scholar
  110. 110.
    Aksoy N (2016) Weight gain after kidney transplant. Exp Clin Transplant 14(Suppl 3):138–140PubMedGoogle Scholar
  111. 111.
    Fabbrini E, Magkos F, Conte C, Mittendorfer B, Patterson BW, Okunade AL, Klein S (2012) Validation of a novel index to assess insulin resistance of adipose tissue lipolytic activity in obese subjects. J Lipid Res 53(2):321–324.  https://doi.org/10.1194/jlr.D020321 PubMedPubMedCentralCrossRefGoogle Scholar
  112. 112.
    Oste MC, Corpeleijn E, Navis GJ, Keyzer CA, Soedamah-Muthu SS, van den Berg E, Postmus D, de Borst MH, Kromhout D, Bakker SJ (2017) Mediterranean style diet is associated with low risk of new-onset diabetes after renal transplantation. BMJ Open Diabetes Res Care 5(1):e000283.  https://doi.org/10.1136/bmjdrc-2016-000283 PubMedPubMedCentralCrossRefGoogle Scholar
  113. 113.
    Sharif A, Moore R, Baboolal K (2008) Influence of lifestyle modification in renal transplant recipients with postprandial hyperglycemia. Transplantation 85(3):353–358.  https://doi.org/10.1097/TP.0b013e3181605ebf PubMedCrossRefGoogle Scholar
  114. 114.
    Ryan KJ, Casas JM, Mash LE, McLellan SL, Lloyd LE, Stinear JW, Plank LD, Collins MG (2014) The effect of intensive nutrition interventions on weight gain after kidney transplantation: protocol of a randomised controlled trial. BMC Nephrol 15:148.  https://doi.org/10.1186/1471-2369-15-148 PubMedPubMedCentralCrossRefGoogle Scholar
  115. 115.
    Camilleri B, Bridson JM, Sharma A, Halawa A (2016) From chronic kidney disease to kidney transplantation: the impact of obesity and its treatment modalities. Transplant Rev 30(4):203–211.  https://doi.org/10.1016/j.trre.2016.07.006 CrossRefGoogle Scholar
  116. 116.
    Chen JH, Lee CH, Chang CM, Yin WY (2016) Successful management of new-onset diabetes mellitus and obesity with the use of laparoscopic sleeve gastrectomy after kidney transplantation-a case report. Transpl Proc 48(3):938–939.  https://doi.org/10.1016/j.transproceed.2015.12.074 CrossRefGoogle Scholar
  117. 117.
    Kim SJ (2017) Serum uric acid levels and kidney transplant outcomes: Cause, consequence, or confounded? Am J Kidney Dis 70(6):752–753.  https://doi.org/10.1053/j.ajkd.2017.08.006 PubMedCrossRefGoogle Scholar
  118. 118.
    Pagonas N, Kor S, Seibert FS, Giese A, Zidek W, Reinke P, Babel N, Bauer F, Westhoff TH (2016) Effects of treatment of asymptomatic hyperuricemia on graft survival and mortality in kidney transplant recipients. Ann Transplant 21:350–359.  https://doi.org/10.12659/AOT.896821 PubMedCrossRefGoogle Scholar
  119. 119.
    Van Laecke S, Nagler EV, Taes Y, Van Biesen W, Peeters P, Vanholder R (2014) The effect of magnesium supplements on early post-transplantation glucose metabolism: a randomized controlled trial. Transpl Int 27(9):895–902.  https://doi.org/10.1111/tri.12287 PubMedCrossRefGoogle Scholar
  120. 120.
    Van Laecke S, Caluwe R, Huybrechts I, Nagler EV, Vanholder R, Peeters P, Van Vlem B, Van Biesen W (2017) Effect of magnesium supplements on insulin secretion after kidney transplantation: a randomized controlled trial. Ann Transplant 22:524–531PubMedCrossRefGoogle Scholar
  121. 121.
    Courbebaisse M, Alberti C, Colas S, Prie D, Souberbielle JC, Treluyer JM, Thervet E (2014) VITamin D supplementation in renAL transplant recipients (VITALE): a prospective, multicentre, double-blind, randomized trial of vitamin D estimating the benefit and safety of vitamin D3 treatment at a dose of 100,000 UI compared with a dose of 12,000 UI in renal transplant recipients: study protocol for a double-blind, randomized, controlled trial. Trials 15:430.  https://doi.org/10.1186/1745-6215-15-430 PubMedPubMedCentralCrossRefGoogle Scholar
  122. 122.
    Gursoy M, Koksal R, Karavelioglu D, Colak T, Gur G, Ozdemir N, Boyacioglu S, Bilgin N (2000) Pretransplantation alpha-interferon therapy and the effect of hepatitis C virus infection on kidney allograft recipients. Transpl Proc 32(3):580–582CrossRefGoogle Scholar
  123. 123.
    Kamar N, Mariat C, Delahousse M, Dantal J, Al Najjar A, Cassuto E, Lefrancois N, Cointault O, Touchard G, Villemain F, Di Giambattista F, Benhamou PY, Diapason Study G (2007) Diabetes mellitus after kidney transplantation: a French multicentre observational study. Nephrol Dial Transplant 22(7):1986–1993.  https://doi.org/10.1093/ndt/gfm011 PubMedCrossRefGoogle Scholar
  124. 124.
    Humar A, Lebranchu Y, Vincenti F, Blumberg EA, Punch JD, Limaye AP, Abramowicz D, Jardine AG, Voulgari AT, Ives J, Hauser IA, Peeters P (2010) The efficacy and safety of 200 days valganciclovir cytomegalovirus prophylaxis in high-risk kidney transplant recipients. Am J Transplant 10(5):1228–1237.  https://doi.org/10.1111/j.1600-6143.2010.03074.x PubMedCrossRefGoogle Scholar
  125. 125.
    Bhat M, Pasini E, Copeland J, Angeli M, Husain S, Kumar D, Renner E, Teterina A, Allard J, Guttman DS, Humar A (2017) Impact of immunosuppression on the metagenomic composition of the intestinal microbiome: a systems biology approach to post-transplant diabetes. Sci Rep 7(1):10277.  https://doi.org/10.1038/s41598-017-10471-2 PubMedPubMedCentralCrossRefGoogle Scholar
  126. 126.
    Werzowa J, Hecking M, Haidinger M, Lechner F, Doller D, Pacini G, Stemer G, Pleiner J, Frantal S, Saemann MD (2013) Vildagliptin and pioglitazone in patients with impaired glucose tolerance after kidney transplantation: a randomized, placebo-controlled clinical trial. Transplantation 95(3):456–462.  https://doi.org/10.1097/TP.0b013e318276a20e PubMedCrossRefGoogle Scholar
  127. 127.
    Alnasrallah B, Pilmore H, Manley P (2017) Protocol for a pilot randomised controlled trial of metformin in pre-diabetes after kidney transplantation: the transplantation and diabetes (transdiab) study. BMJ Open 7(8):e016813.  https://doi.org/10.1136/bmjopen-2017-016813 PubMedPubMedCentralCrossRefGoogle Scholar
  128. 128.
    Webster AC, Woodroffe RC, Taylor RS, Chapman JR, Craig JC (2005) Tacrolimus versus ciclosporin as primary immunosuppression for kidney transplant recipients: meta-analysis and meta-regression of randomised trial data. BMJ 331(7520):810.  https://doi.org/10.1136/bmj.38569.471007.AE PubMedPubMedCentralCrossRefGoogle Scholar
  129. 129.
    Rizzari MD, Suszynski TM, Gillingham KJ, Dunn TB, Ibrahim HN, Payne WD, Chinnakotla S, Finger EB, Sutherland DE, Kandaswamy R, Najarian JS, Pruett TL, Kukla A, Spong R, Matas AJ (2012) Ten-year outcome after rapid discontinuation of prednisone in adult primary kidney transplantation. Clin J Am Soc Nephrol CJASN 7(3):494–503.  https://doi.org/10.2215/CJN.08630811 PubMedCrossRefGoogle Scholar
  130. 130.
    Serrano OK, Kandaswamy R, Gillingham K, Chinnakotla S, Dunn TB, Finger E, Payne W, Ibrahim H, Kukla A, Spong R, Issa N, Pruett TL, Matas A (2017) Rapid discontinuation of prednisone in kidney transplant recipients: 15-year outcomes from the University of Minnesota. Transplantation 101(10):2590–2598.  https://doi.org/10.1097/TP.0000000000001756 PubMedCrossRefGoogle Scholar
  131. 131.
    Pirsch JD, Henning AK, First MR, Fitzsimmons W, Gaber AO, Reisfield R, Shihab F, Woodle ES (2015) New-Onset diabetes after transplantation: results from a double-blind early corticosteroid withdrawal trial. Am J Transplant 15(7):1982–1990.  https://doi.org/10.1111/ajt.13247 PubMedCrossRefGoogle Scholar
  132. 132.
    Knight K, Hoppeler H (2010) Bill harvey retires. J Exp Biol 213(1):1.  https://doi.org/10.1242/jeb.040469 PubMedCrossRefGoogle Scholar
  133. 133.
    Haller MC, Kammer M, Kainz A, Baer HJ, Heinze G, Oberbauer R (2017) Steroid withdrawal after renal transplantation: a retrospective cohort study. BMC Med 15(1):8.  https://doi.org/10.1186/s12916-016-0772-6 PubMedPubMedCentralCrossRefGoogle Scholar
  134. 134.
    Mourad G, Glyda M, Albano L, Viklicky O, Merville P, Tyden G, Mourad M, Lohmus A, Witzke O, Christiaans MHL, Brown MW, Undre N, Kazeem G, Kuypers DRJ, Advagraf-based immunosuppression regimen examining new onset diabetes mellitus in kidney transplant recipients study i (2017) Incidence of posttransplantation diabetes mellitus in de novo kidney transplant recipients receiving prolonged-release tacrolimus-based immunosuppression with 2 different corticosteroid minimization strategies: ADVANCE, a randomized controlled trial. Transplantation 101(8):1924–1934.  https://doi.org/10.1097/TP.0000000000001453 PubMedPubMedCentralCrossRefGoogle Scholar
  135. 135.
    Haller MC, Royuela A, Nagler EV, Pascual J, Webster AC (2016) Steroid avoidance or withdrawal for kidney transplant recipients. Cochrane Database Syst Rev.  https://doi.org/10.1002/14651858.cd005632.pub3 PubMedCrossRefGoogle Scholar
  136. 136.
    Snowsill TM, Moore J, Mujica Mota RE, Peters JL, Jones-Hughes TL, Huxley NJ, Coelho HF, Haasova M, Cooper C, Lowe JA, Varley-Campbell JL, Crathorne L, Allwood MJ, Anderson R (2017) Immunosuppressive agents in adult kidney transplantation in the National Health Service: a model-based economic evaluation. Nephrol Dial Transplant 32(7):1251–1259.  https://doi.org/10.1093/ndt/gfx074 PubMedPubMedCentralCrossRefGoogle Scholar
  137. 137.
    Batista F, Auyanet I, Torregrosa JV, Oppenheimer F (2012) Long-term follow-up after conversion from tacrolimus to cyclosporin in renal transplant patients with new-onset diabetes mellitus after transplantation. Transpl Proc 44(9):2582–2584.  https://doi.org/10.1016/j.transproceed.2012.09.066 CrossRefGoogle Scholar
  138. 138.
    Sharif A, Shabir S, Chand S, Cockwell P, Ball S, Borrows R (2011) Meta-analysis of calcineurin-inhibitor-sparing regimens in kidney transplantation. J Am Soc Nephrol JASN 22(11):2107–2118.  https://doi.org/10.1681/ASN.2010111160 PubMedCrossRefGoogle Scholar
  139. 139.
    Karpe KM, Talaulikar GS, Walters GD (2017) Calcineurin inhibitor withdrawal or tapering for kidney transplant recipients. Cochrane Database Syst Rev.  https://doi.org/10.1002/14651858.cd006750.pub2 PubMedCrossRefGoogle Scholar
  140. 140.
    Veroux M, Tallarita T, Corona D, Sinagra N, Giaquinta A, Zerbo D, Guerrieri C, D’Assoro A, Cimino S, Veroux P (2013) Conversion to sirolimus therapy in kidney transplant recipients with new onset diabetes mellitus after transplantation. Clin Dev Immunol 2013:496974.  https://doi.org/10.1155/2013/496974 PubMedPubMedCentralCrossRefGoogle Scholar
  141. 141.
    Teutonico A, Schena PF, Di Paolo S (2005) Glucose metabolism in renal transplant recipients: effect of calcineurin inhibitor withdrawal and conversion to sirolimus. J Am Soc Nephrol JASN 16(10):3128–3135.  https://doi.org/10.1681/ASN.2005050487 PubMedCrossRefGoogle Scholar
  142. 142.
    Kalble F, Seckinger J, Schaier M, Morath C, Schwenger V, Zeier M, Sommerer C (2017) Switch to an everolimus-facilitated cyclosporine A sparing immunosuppression improves glycemic control in selected kidney transplant recipients. Clin Transplant.  https://doi.org/10.1111/ctr.13024 PubMedCrossRefGoogle Scholar
  143. 143.
    Masson P, Henderson L, Chapman JR, Craig JC, Webster AC (2014) Belatacept for kidney transplant recipients. Cochrane Database Syst Rev.  https://doi.org/10.1002/14651858.cd010699.pub2 PubMedCrossRefGoogle Scholar
  144. 144.
    Sharif A (2011) Should metformin be our antiglycemic agent of choice post-transplantation? Am J Transplant 11(7):1376–1381.  https://doi.org/10.1111/j.1600-6143.2011.03550.x PubMedCrossRefGoogle Scholar

Copyright information

© Springer-Verlag Italia S.r.l., part of Springer Nature 2018

Authors and Affiliations

  1. 1.I.R.C.C.S. Ospedale San RaffaeleMilanItaly
  2. 2.Vita-Salute San Raffaele UniversityMilanItaly

Personalised recommendations