Skip to main content

Advertisement

Log in

GLIS3 rs7020673 and rs10758593 polymorphisms interact in the susceptibility for type 1 diabetes mellitus

  • Original Article
  • Published:
Acta Diabetologica Aims and scope Submit manuscript

Abstract

Aims

The transcription factor Gli-similar 3 (GLIS3) plays a key role in the development and maintenance of pancreatic beta cells as well as in the regulation of Insulin gene expression in adults. Accordingly, genome-wide association studies identified GLIS3 as a susceptibility locus for type 1 diabetes mellitus (T1DM) and glucose metabolism traits. Therefore, the aim of this study was to replicate the association of the rs10758593 and rs7020673 single nucleotide polymorphisms (SNPs) in the GLIS3 gene with T1DM in a Brazilian population.

Methods

Frequencies of the rs7020673 (G/C) and rs10758593 (A/G) SNPs were analyzed in 503 T1DM patients (cases) and in 442 non-diabetic subjects (controls). Haplotypes constructed from the combination of these SNPs were inferred using a Bayesian statistical method.

Results

Genotype and allele frequencies of rs7020673 and rs10758593 SNPs did not differ significantly between case and control groups. However, the frequency of ≥3 minor alleles of the analyzed SNPs in haplotypes was higher in T1DM patients compared to non-diabetic subjects (6.2 vs. 1.6%; P = 0.001). The presence of ≥3 minor alleles remained independently associated with risk of T1DM after adjustment for T1DM high-risk HLA DR/DQ haplotypes, age and ethnicity (OR = 3.684 95% CI 1.220–11.124). Moreover, levels of glycated hemoglobin seem to be higher in T1DM patients with rs10758593 A/A genotype than patients carrying the G allele of this SNP (P = 0.038), although this association was not kept after Bonferroni correction.

Conclusions

Our results indicate that individually the rs7020673 and rs10758593 SNPs are not significantly associated with T1DM but seem to interact in the predisposition for this disease.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Institutional subscriptions

Similar content being viewed by others

References

  1. van Belle TL, Coppieters KT, von Herrath MG (2011) Type 1 diabetes: etiology, immunology, and therapeutic strategies. Physiol Rev 91(1):79–118. doi:10.1152/physrev.00003.2010

    Article  PubMed  Google Scholar 

  2. Todd JA (2010) Etiology of type 1 diabetes. Immunity 32:457–467

    Article  CAS  PubMed  Google Scholar 

  3. American Diabetes Association (2015) Classification and diagnosis of diabetes. Diabetes Care 38(Suppl):S8–S16. doi:10.2337/dc15-S005

    Article  Google Scholar 

  4. Nguyen C, Varney MD, Harrison LC et al (2013) Definition of high-risk type 1 diabetes HLA-DR and HLA-DQ types using only three single nucleotide polymorphisms. Diabetes 62(6):2135–2140. doi:10.2337/db12-1398

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  5. Steck AK, Rewers MJ (2011) Genetics of type 1 diabetes. Clin Chem 57(2):176–185. doi:10.1373/clinchem.2010.148221

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  6. Santin I, Eizirik DL (2013) Candidate genes for type 1 diabetes modulate pancreatic islet inflammation and β-cell apoptosis. Diabetes Obes Metab 15(Suppl 3):71–81. doi:10.1111/dom.12162

    Article  CAS  PubMed  Google Scholar 

  7. Noble JA (2015) Immunogenetics of type 1 diabetes: a comprehensive review. J Autoimmun 64:101–112. doi:10.1016/j.jaut.2015.07.014

    Article  CAS  PubMed  Google Scholar 

  8. Pociot F, Lernmark A (2016) Genetic risk factors for type 1 diabetes. Lancet 387(10035):2331–2339. doi:10.1016/s0140-6736(16)30582-7

    Article  CAS  PubMed  Google Scholar 

  9. Winkler C, Krumsiek J, Buettner F et al (2014) Feature ranking of type 1 diabetes susceptibility genes improves prediction of type 1 diabetes. Diabetologia 57(12):2521–2529. doi:10.1007/s00125-014-3362-1

    Article  CAS  PubMed  Google Scholar 

  10. Steck AK, Dong F, Wong R et al (2014) Improving prediction of type 1 diabetes by testing non-HLA genetic variants in addition to HLA markers. Pediatr Diabetes 15(5):355–362

    Article  CAS  PubMed  Google Scholar 

  11. Barker JM, Triolo TM, Aly TA et al (2008) Two single nucleotide polymorphisms identify the highest-risk diabetes HLA genotype: potential for rapid screening. Diabetes 57(11):3152–3155. doi:10.2337/db08-0605

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  12. Kim YS, Nakanishi G, Lewandoski M et al (2003) GLIS3, a novel member of the GLIS subfamily of Krüppel-like zinc finger proteins with repressor and activation functions. Nucleic Acids Res 31(19):5513–5525

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  13. Senée V, Chelala C, Duchatelet S et al (2006) Mutations in GLIS3 are responsible for a rare syndrome with neonatal diabetes mellitus and congenital hypothyroidism. Nat Genet 38(6):682–687. doi:10.1038/ng1802

    Article  PubMed  Google Scholar 

  14. Yang Y, Chang BH, Samson SL et al (2009) The Krüppel-like zinc finger protein Glis3 directly and indirectly activates insulin gene transcription. Nucleic Acids Res 37(8):2529–2538. doi:10.1093/nar/gkp122

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  15. Kang HS, Kim YS, ZeRuth G et al (2009) Transcription factor Glis3, a novel critical player in the regulation of pancreatic beta-cell development and insulin gene expression. Mol Cell Biol 29(24):6366–6379. doi:10.1128/mcb.01259-09

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  16. Watanabe N, Hiramatsu K, Miyamoto R et al (2009) A murine model of neonatal diabetes mellitus in Glis3-deficient mice. FEBS Lett 583(12):2108–2113. doi:10.1016/j.febslet.2009.05.039

    Article  CAS  PubMed  Google Scholar 

  17. Kang HS, Takeda Y, Jeon K et al (2016) The spatiotemporal pattern of Glis3 expression indicates a regulatory function in bipotent and endocrine progenitors during early pancreatic development and in beta, PP and Ductal Cells. PLoS ONE 11(6):e0157138. doi:10.1371/journal.pone.0157138

    Article  PubMed  PubMed Central  Google Scholar 

  18. Yang Y, Chang BH, Chan L (2013) Sustained expression of the transcription factor GLIS3 is required for normal beta cell function in adults. EMBO Mol Med 5(1):92–104. doi:10.1002/emmm.201201398

    Article  CAS  PubMed  Google Scholar 

  19. Nogueira TC, Paula FM, Villate O et al (2013) GLIS3, a susceptibility gene for type 1 and type 2 diabetes, modulates pancreatic beta cell apoptosis via regulation of a splice variant of the BH3-only protein Bim. PLoS Genet 9(5):e1003532. doi:10.1371/journal.pgen.1003532

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  20. Yang Y, Chang BH, Yechoor V et al (2011) The Kruppel-like zinc finger protein GLIS3 transactivates neurogenin 3 for proper fetal pancreatic islet differentiation in mice. Diabetologia 54(10):2595–2605. doi:10.1007/s00125-011-2255-9

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  21. Barrett JC, Clayton DG, Concannon P et al (2009) Genome-wide association study and meta-analysis find that over 40 loci affect risk of type 1 diabetes. Nat Genet 41(6):703–707. doi:10.1038/ng.381

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  22. Grant SF, Qu HQ, Bradfield JP et al (2009) Follow-up analysis of genome-wide association data identifies novel loci for type 1 diabetes. Diabetes 58(1):290–295. doi:10.2337/db08-1022

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  23. Dupuis J, Langenberg C, Prokopenko I et al (2010) New genetic loci implicated in fasting glucose homeostasis and their impact on type 2 diabetes risk. Nat Genet 42(2):105–116. doi:10.1038/ng.520

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  24. Cho YS, Chen CH, Hu C et al (2012) Meta-analysis of genome-wide association studies identifies eight new loci for type 2 diabetes in east Asians. Nat Genet 44(1):67–72. doi:10.1038/ng.1019

    Article  CAS  Google Scholar 

  25. Li H, Gan W, Lu L et al (2013) A genome-wide association study identifies GRK5 and RASGRP1 as type 2 diabetes loci in Chinese Hans. Diabetes 62(1):291–298

    Article  CAS  PubMed  Google Scholar 

  26. Sakai K, Imamura M, Tanaka Y et al (2013) Replication study for the association of 9 East Asian GWAS-derived loci with susceptibility to type 2 diabetes in a Japanese population. PLoS ONE 8(9):e76317. doi:10.1371/journal.pone.0076317

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  27. Boesgaard TW, Grarup N, Jørgensen T et al (2010) Variants at DGKB/TMEM195, ADRA2A, GLIS3 and C2CD4B loci are associated with reduced glucose-stimulated beta cell function in middle-aged Danish people. Diabetologia 53(8):1647–1655. doi:10.1007/s00125-010-1753-5

    Article  CAS  PubMed  Google Scholar 

  28. Barker A, Sharp SJ, Timpson NJ et al (2011) Association of genetic Loci with glucose levels in childhood and adolescence: a meta-analysis of over 6,000 children. Diabetes 60(6):1805–1812. doi:10.2337/db10-1575

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  29. Liu C, Li H, Qi L et al (2011) Variants in GLIS3 and CRY2 are associated with type 2 diabetes and impaired fasting glucose in Chinese Hans. PLoS ONE 6(6):e21464. doi:10.1371/journal.pone.0021464

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  30. Hong KW, Chung M, Cho SB (2014) Meta-analysis of genome-wide association study of homeostasis model assessment beta cell function and insulin resistance in an East Asian population and the European results. Mol Genet Genomics MGG 289(6):1247–1255. doi:10.1007/s00438-014-0885-6

    Article  CAS  PubMed  Google Scholar 

  31. Awata T, Yamashita H, Kurihara S et al (2013) A low-frequency GLIS3 variant associated with resistance to Japanese type 1 diabetes. Biochem Biophys Res Commun 437(4):521–525. doi:10.1016/j.bbrc.2013.06.102

    Article  CAS  PubMed  Google Scholar 

  32. Kiani AK, John P, Bhatti A et al (2015) Association of 32 type 1 diabetes risk loci in Pakistani patients. Diabetes Res Clin Pract 108(1):137–142. doi:10.1016/j.diabres.2015.01.022

    Article  CAS  PubMed  Google Scholar 

  33. von Elm E, Altman DG, Egger M et al (2008) The strengthening the reporting of observational studies in epidemiology (STROBE) statement: guidelines for reporting observational studies. J Clin Epidemiol 61(4):344–349. doi:10.1016/j.jclinepi.2007.11.008

    Article  Google Scholar 

  34. Little J, Higgins JP, Ioannidis JP et al (2009) STrengthening the REporting of Genetic Association Studies (STREGA)–an extension of the STROBE statement. Genet Epidemiol 33(7):581–598. doi:10.1002/gepi.20410

    Article  PubMed  Google Scholar 

  35. Assmann TS, Brondani LA, Bauer AC et al (2014) Polymorphisms in the TLR3 gene are associated with risk for type 1 diabetes mellitus. Eur J Endocrinol 170(4):519–527. doi:10.1530/eje-13-0963

    Article  CAS  PubMed  Google Scholar 

  36. Bouças AP, Brondani LA, Souza BM et al (2013) The A allele of the rs1990760 polymorphism in the IFIH1 gene is associated with protection for arterial hypertension in type 1 diabetic patients and with expression of this gene in human mononuclear cells. PLoS ONE 8(12):e83451. doi:10.1371/journal.pone.0083451

    Article  PubMed  PubMed Central  Google Scholar 

  37. Lahiri DK, Nurnberger JI (1991) A rapid non-enzymatic method for the preparation of HMW DNA from blood for RFLP studies. Nucleic Acids Res 19(19):5444

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  38. Hedrick PW (1987) Gametic disequilibrium measures: proceed with caution. Genetics 117(2):331–341

    CAS  PubMed  PubMed Central  Google Scholar 

  39. Stephens M, Smith NJ, Donnelly P (2001) A new statistical method for haplotype reconstruction from population data. Am J Hum Genet 68(4):978–989. doi:10.1086/319501

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  40. ZeRuth GT, Takeda Y, Jetten AM (2013) The Krüppel-like protein Gli-similar 3 (Glis3) functions as a key regulator of insulin transcription. Mol Endocrinol 27(10):1692–1705. doi:10.1210/me.2013-1117

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  41. Kiani AK, Jahangir S, John P et al (2015) Genetic link of type 1 diabetes susceptibility loci with rheumatoid arthritis in Pakistani patients. Immunogenetics 67(5–6):277–282. doi:10.1007/s00251-015-0839-0

    Article  CAS  PubMed  Google Scholar 

  42. Santin I, Moore F, Colli ML et al (2011) PTPN2, a candidate gene for type 1 diabetes, modulates pancreatic beta-cell apoptosis via regulation of the BH3-only protein Bim. Diabetes 60(12):3279–3288. doi:10.2337/db11-0758

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  43. Colli ML, Nogueira TC, Allagnat F et al (2011) Exposure to the viral by-product dsRNA or Coxsackievirus B5 triggers pancreatic beta cell apoptosis via a Bim/Mcl-1 imbalance. PLoS Pathog 7(9):e1002267. doi:10.1371/journal.ppat.1002267

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  44. McKenzie MD, Jamieson E, Jansen ES et al (2010) Glucose induces pancreatic islet cell apoptosis that requires the BH3-only proteins Bim and Puma and multi-BH domain protein Bax. Diabetes 59(3):644–652. doi:10.2337/db09-1151

    Article  CAS  PubMed  Google Scholar 

  45. Dooley J, Tian L, Schonefeldt S et al (2016) Genetic predisposition for beta cell fragility underlies type 1 and type 2 diabetes. Nat Genet 48(5):519–527. doi:10.1038/ng.3531

    Article  CAS  PubMed  Google Scholar 

Download references

Acknowledgements

This study was supported by Grants from Conselho Nacional de Desenvolvimento Científico e Tecnológico (Grant Number: 482525/2013-4), Fundação de Amparo à Pesquisa do Estado do Rio Grande do Sul (Grant Number: 1928-2551/13-2), Coordenação de Aperfeiçoamento de Pessoal de Nível Superior, and Fundo de Incentivo à Pesquisa e Eventos at Hospital de Clínicas de Porto Alegre (Grant Number: 15-0003). D. Crispim, L.H.Canani, G.K.C.Duarte and T. S. Assmann are recipients of scholarships from CNPq, and B.M.S is recipient of scholarships from CAPES.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Daisy Crispim.

Ethics declarations

Conflict of interest

The authors declare no conflict of interest.

Ethical standard

All procedures performed in studies involving human participants were in accordance with the ethical standards of the Hospital de Cl´ınicas de Porto Alegre research committee (Number of approval 15-0003) and with the 1964 Helsinki Declaration and its amendments or comparable ethical standards.

Human and animal rights

All procedures followed were in accordance with the ethical standards of the responsible committee on human experimentation (Comitê em Ética em Pesquisa do Hospital de Clinicas de Porto Alegre) and with the Helsinki Declaration of 1975, as revised in 2008. No animal was used in this study.

Informed consent

All subjects gave assent and written informed consent prior to participation.

Additional information

Managed by Antonio Secchi.

Electronic supplementary material

Below is the link to the electronic supplementary material.

Supplementary material 1 (DOCX 15 kb)

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Duarte, G.C.K., Assmann, T.S., Dieter, C. et al. GLIS3 rs7020673 and rs10758593 polymorphisms interact in the susceptibility for type 1 diabetes mellitus. Acta Diabetol 54, 813–821 (2017). https://doi.org/10.1007/s00592-017-1009-7

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s00592-017-1009-7

Keywords

Navigation