Skip to main content

Advertisement

Log in

MicroRNA expression profiles of human iPSCs differentiation into insulin-producing cells

  • Original Article
  • Published:
Acta Diabetologica Aims and scope Submit manuscript

Abstract

Aims

MicroRNAs are a class of small noncoding RNAs, which control gene expression by inhibition of mRNA translation. MicroRNAs are involved in the control of biological processes including cell differentiation. Here, we aim at characterizing microRNA expression profiles during differentiation of human induced pluripotent stem cells (hiPSCs) into insulin-producing cells.

Methods

We differentiated hiPSCs toward endocrine pancreatic lineage following a 18-day protocol. We analyzed genes and microRNA expression levels using RT real-time PCR and TaqMan microRNA arrays followed by bioinformatic functional analysis.

Results

MicroRNA expression profiles analysis of undifferentiated hiPSCs during pancreatic differentiation revealed that 347/768 microRNAs were expressed at least in one time point of all samples. We observed 18 microRNAs differentially expressed: 11 were upregulated (miR-9-5p, miR-9-3p, miR-10a, miR-99a-3p, miR-124a, miR-135a, miR-138, miR-149, miR-211, miR-342-3p and miR-375) and 7 downregulated (miR-31, miR-127, miR-143, miR-302c-3p, miR-373, miR-518b and miR-520c-3p) during differentiation into insulin-producing cells. Selected microRNAs were further evaluated during differentiation of Sendai-virus-reprogrammed hiPSCs using an improved endocrine pancreatic beta cell derivation protocol and, moreover, in differentiated NKX6.1+ sorted cells. Following Targetscan7.0 analysis of target genes of differentially expressed microRNAs and gene ontology classification, we found that such target genes belong to categories of major significance in pancreas organogenesis and development or exocytosis.

Conclusions

We detected a specific hiPSCs microRNAs signature during differentiation into insulin-producing cells and demonstrated that differentially expressed microRNAs target several genes involved in pancreas organogenesis.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6
Fig. 7

Similar content being viewed by others

References

  1. Bartel DP (2004) MicroRNAs: genomics, biogenesis, mechanism, and function. Cell 116:281–297

    Article  CAS  PubMed  Google Scholar 

  2. Kim VN (2005) MicroRNA biogenesis: coordinated cropping and dicing. Nat Rev Mol Cell Biol 6:376–385. doi:10.1038/nrm1644

    Article  CAS  PubMed  Google Scholar 

  3. Schirle NT, Sheu-Gruttadauria J, MacRae IJ (2014) Structural basis for microRNA targeting. Science 346:608–613. doi:10.1126/science.1258040

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  4. Chandradoss SD, Schirle NT, Szczepaniak M et al (2015) A dynamic search process underlies microRNA targeting. Cell 162:96–107. doi:10.1016/j.cell.2015.06.032

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  5. Moradi S, Asgari S, Baharvand H (2014) Concise review: harmonies played by microRNAs in cell fate reprogramming. Stem Cells 32:3–15. doi:10.1002/stem.1576

    Article  CAS  PubMed  Google Scholar 

  6. Greve TS, Judson RL, Blelloch R (2013) microRNA control of mouse and human pluripotent stem cell behavior. Annu Rev Cell Dev Biol 29:213–239. doi:10.1146/annurev-cellbio-101512-122343

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  7. Leonardo TR, Schultheisz HL, Loring JF, Laurent LC (2012) The functions of microRNAs in pluripotency and reprogramming. Nat Cell Biol 14:1114–1121. doi:10.1038/ncb2613

    Article  CAS  PubMed  Google Scholar 

  8. Kuo C-H, Deng JH, Deng Q, Ying S-Y (2012) A novel role of miR-302/367 in reprogramming. Biochem Biophys Res Commun 417:11–16. doi:10.1016/j.bbrc.2011.11.058

    Article  CAS  PubMed  Google Scholar 

  9. Kelley K, Lin S-L (2012) Induction of somatic cell reprogramming using the microRNA miR-302. Prog Mol Biol Transl Sci 111:83–107. doi:10.1016/B978-0-12-398459-3.00004-6

    Article  CAS  PubMed  Google Scholar 

  10. Chen C-Z, Li L, Lodish HF, Bartel DP (2004) MicroRNAs modulate hematopoietic lineage differentiation. Science 303:83–86. doi:10.1126/science.1091903

    Article  CAS  PubMed  Google Scholar 

  11. Krichevsky AM, Sonntag K-C, Isacson O, Kosik KS (2006) Specific microRNAs modulate embryonic stem cell-derived neurogenesis. Stem Cells 24:857–864. doi:10.1634/stemcells.2005-0441

    Article  CAS  PubMed  Google Scholar 

  12. Shenoy A, Blelloch RH (2014) Regulation of microRNA function in somatic stem cell proliferation and differentiation. Nat Rev Mol Cell Biol 15:565–576. doi:10.1038/nrm3854

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  13. Eliasson L, Esguerra JLS (2014) Role of non-coding RNAs in pancreatic beta-cell development and physiology. Acta Physiol (Oxf) 211:273–284. doi:10.1111/apha.12285

    Article  CAS  Google Scholar 

  14. Dumortier O, Van Obberghen E (2012) MicroRNAs in pancreas development. Diabetes Obes Metab 14(Suppl 3):22–28. doi:10.1111/j.1463-1326.2012.01656.x

    Article  CAS  PubMed  Google Scholar 

  15. Lynn FC, Skewes-Cox P, Kosaka Y et al (2007) MicroRNA expression is required for pancreatic islet cell genesis in the mouse. Diabetes 56:2938–2945. doi:10.2337/db07-0175

    Article  CAS  PubMed  Google Scholar 

  16. Joglekar MV, Joglekar VM, Hardikar AA (2009) Expression of islet-specific microRNAs during human pancreatic development. Gene Expr Patterns 9:109–113. doi:10.1016/j.gep.2008.10.001

    Article  CAS  PubMed  Google Scholar 

  17. Kaspi H, Pasvolsky R, Hornstein E (2014) Could microRNAs contribute to the maintenance of β cell identity? Trends Endocrinol Metab 25:285–292. doi:10.1016/j.tem.2014.01.003

    Article  CAS  PubMed  Google Scholar 

  18. Esguerra JLS, Mollet IG, Salunkhe VA et al (2014) Regulation of pancreatic beta cell stimulus-secretion coupling by microRNAs. Genes (Basel) 5:1018–1031. doi:10.3390/genes5041018

    Google Scholar 

  19. Sebastiani G, Po A, Miele E et al (2015) MicroRNA-124a is hyperexpressed in type 2 diabetic human pancreatic islets and negatively regulates insulin secretion. Acta Diabetol 52:523–530. doi:10.1007/s00592-014-0675-y

    Article  CAS  PubMed  Google Scholar 

  20. Kalis M, Bolmeson C, Esguerra JLS et al (2011) Beta-cell specific deletion of Dicer1 leads to defective insulin secretion and diabetes mellitus. PLoS ONE 6:e29166. doi:10.1371/journal.pone.0029166

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  21. Takahashi K, Tanabe K, Ohnuki M et al (2007) Induction of pluripotent stem cells from adult human fibroblasts by defined factors. Cell 131:861–872. doi:10.1016/j.cell.2007.11.019

    Article  CAS  PubMed  Google Scholar 

  22. Pellegrini S, Ungaro F, Mercalli A et al (2015) Human induced pluripotent stem cells differentiate into insulin-producing cells able to engraft in vivo. Acta Diabetol 52:1025–1035. doi:10.1007/s00592-015-0726-z

    Article  CAS  PubMed  Google Scholar 

  23. Pagliuca FW, Millman JR, Gürtler M et al (2014) Generation of functional human pancreatic β cells in vitro. Cell 159:428–439. doi:10.1016/j.cell.2014.09.040

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  24. Huang DW, Sherman BT, Lempicki RA (2009) Systematic and integrative analysis of large gene lists using DAVID bioinformatics resources. Nat Protoc 4:44–57. doi:10.1038/nprot.2008.211

    Article  CAS  Google Scholar 

  25. D’Amour KA, Bang AG, Eliazer S et al (2006) Production of pancreatic hormone-expressing endocrine cells from human embryonic stem cells. Nat Biotechnol 24:1392–1401. doi:10.1038/nbt1259

    Article  PubMed  Google Scholar 

  26. Tateishi K, He J, Taranova O et al (2008) Generation of insulin-secreting islet-like clusters from human skin fibroblasts. J Biol Chem 283:31601–31607. doi:10.1074/jbc.M806597200

    Article  CAS  PubMed  Google Scholar 

  27. Alipio Z, Liao W, Roemer EJ et al (2010) Reversal of hyperglycemia in diabetic mouse models using induced-pluripotent stem (iPS)-derived pancreatic beta-like cells. Proc Natl Acad Sci USA 107:13426–13431. doi:10.1073/pnas.1007884107

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  28. Guo Q-S, Zhu M-Y, Wang L et al (2012) Combined transfection of the three transcriptional factors, PDX-1, NeuroD1, and MafA, causes differentiation of bone marrow mesenchymal stem cells into insulin-producing cells. Exp Diabetes Res 2012:672013. doi:10.1155/2012/672013

    PubMed  Google Scholar 

  29. Mogilyansky E, Rigoutsos I (2013) The miR-17/92 cluster: a comprehensive update on its genomics, genetics, functions and increasingly important and numerous roles in health and disease. Cell Death Differ 20:1603–1614. doi:10.1038/cdd.2013.125

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  30. Wilson KD, Venkatasubrahmanyam S, Jia F et al (2009) MicroRNA profiling of human-induced pluripotent stem cells. Stem Cells Dev 18:749–758. doi:10.1089/scd.2008.0247

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  31. Razak SRA, Ueno K, Takayama N et al (2013) Profiling of microRNA in human and mouse ES and iPS cells reveals overlapping but distinct microRNA expression patterns. PLoS ONE 8:e73532. doi:10.1371/journal.pone.0073532

    Article  PubMed  PubMed Central  Google Scholar 

  32. Ray JD, Kener KB, Bitner BF et al (2016) Nkx6.1-mediated insulin secretion and β-cell proliferation is dependent on upregulation of c-Fos. FEBS Lett 590:1791–1803. doi:10.1002/1873-3468.12208

    Article  CAS  PubMed  Google Scholar 

  33. Rezania A, Bruin JE, Xu J et al (2013) Enrichment of human embryonic stem cell-derived NKX6.1-expressing pancreatic progenitor cells accelerates the maturation of insulin-secreting cells in vivo. Stem Cells 31:2432–2442. doi:10.1002/stem.1489

    Article  CAS  PubMed  Google Scholar 

  34. Rosero S, Bravo-Egana V, Jiang Z et al (2010) MicroRNA signature of the human developing pancreas. BMC Genomics 11:509. doi:10.1186/1471-2164-11-509

    Article  PubMed  PubMed Central  Google Scholar 

  35. Miyoshi N, Ishii H, Nagano H et al (2011) Reprogramming of mouse and human cells to pluripotency using mature microRNAs. Cell Stem Cell 8:633–638. doi:10.1016/j.stem.2011.05.001

    Article  CAS  PubMed  Google Scholar 

  36. Lahmy R, Soleimani M, Sanati MH et al (2014) MiRNA-375 promotes beta pancreatic differentiation in human induced pluripotent stem (hiPS) cells. Mol Biol Rep 41:2055–2066. doi:10.1007/s11033-014-3054-4

    Article  CAS  PubMed  Google Scholar 

  37. Shaer A, Azarpira N, Karimi MH et al (2015) Differentiation of human-induced pluripotent stem cells into insulin-producing clusters by microRNA-7. Exp Clin Transplant. doi:10.6002/ect.2014.0144

    PubMed  Google Scholar 

  38. Wei R, Yang J, Liu G-Q et al (2013) Dynamic expression of microRNAs during the differentiation of human embryonic stem cells into insulin-producing cells. Gene 518:246–255. doi:10.1016/j.gene.2013.01.038

    Article  CAS  PubMed  Google Scholar 

  39. Chen B-Z, Yu S-L, Singh S et al (2011) Identification of microRNAs expressed highly in pancreatic islet-like cell clusters differentiated from human embryonic stem cells. Cell Biol Int 35:29–37. doi:10.1042/CBI20090081

    Article  CAS  PubMed  Google Scholar 

  40. Liao X, Xue H, Wang Y-C et al (2013) Matched miRNA and mRNA signatures from an hESC-based in vitro model of pancreatic differentiation reveal novel regulatory interactions. J Cell Sci 126:3848–3861. doi:10.1242/jcs.123570

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  41. Edlund H (2002) Pancreatic organogenesis–developmental mechanisms and implications for therapy. Nat Rev Genet 3:524–532. doi:10.1038/nrg841

    Article  CAS  PubMed  Google Scholar 

  42. Subramanyam D, Lamouille S, Judson RL et al (2011) Multiple targets of miR-302 and miR-372 promote reprogramming of human fibroblasts to induced pluripotent stem cells. Nat Biotechnol 29:443–448. doi:10.1038/nbt.1862

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  43. Herranz H, Cohen SM (2010) MicroRNAs and gene regulatory networks: managing the impact of noise in biological systems. Genes Dev 24:1339–1344. doi:10.1101/gad.1937010

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  44. Arntfield ME, van der Kooy D (2011) β-Cell evolution: how the pancreas borrowed from the brain: the shared toolbox of genes expressed by neural and pancreatic endocrine cells may reflect their evolutionary relationship. BioEssays 33:582–587. doi:10.1002/bies.201100015

    Article  PubMed  Google Scholar 

  45. Martens GA, Jiang L, Hellemans KH et al (2011) Clusters of conserved beta cell marker genes for assessment of beta cell phenotype. PLoS ONE 6:e24134. doi:10.1371/journal.pone.0024134

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  46. Abuhatzira L, Xu H, Tahhan G et al (2015) Multiple microRNAs within the 14q32 cluster target the mRNAs of major type 1 diabetes autoantigens IA-2, IA-2β, and GAD65. FASEB J. doi:10.1096/fj.15-273649

    PubMed  PubMed Central  Google Scholar 

Download references

Acknowledgements

This work was supported by grants from the European Union [Project PEVNET (Project Number: 261441) in the Framework Program 7 (FP7)], from the Italian Ministry of Research (n. 2010JS3PMZ_008) and from Fondazione Roma. The editorial help of Maddalena Prencipe has been greatly appreciated. Silvia Pellegrini was supported by a fellowship from the Fondazione Diabete Ricerca (Società Italiana di Diabetologia—SID).

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Francesco Dotta.

Ethics declarations

Conflict of interest

Guido Sebastiani, Marco Valentini, Giuseppina Emanuela Grieco, Giuliana Ventriglia, Laura Nigi, Francesca Mancarella, Silvia Pellegrini, Gianvito Martino,Valeria Sordi, Lorenzo Piemonti and Francesco Dotta declare that they have no conflict of interest.

Ethical standard

All procedures performed were in accordance with the ethical standards and with the 1964 Declaration of Helsinki and its later amendments.

Human and animal rights

All procedures followed were in accordance with the ethical standards of the responsible committee on human experimentation (institutional and national) and with the Helsinki Declaration of 1975, as revised in 2008 (5).

Informed consent

Informed consent was obtained from all patients for being included in the study.

Additional information

Managed by Antonio Secchi.

Electronic supplementary material

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Sebastiani, G., Valentini, M., Grieco, G.E. et al. MicroRNA expression profiles of human iPSCs differentiation into insulin-producing cells. Acta Diabetol 54, 265–281 (2017). https://doi.org/10.1007/s00592-016-0955-9

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s00592-016-0955-9

Keywords

Navigation