Skip to main content

Mediterranean meal versus Western meal effects on postprandial ox-LDL, oxidative and inflammatory gene expression in healthy subjects: a randomized controlled trial for nutrigenomic approach in cardiometabolic risk

Abstract

Aims

Inflammation and oxidative damage contribute significantly to the development of cardiovascular diseases (CVD). Postprandial oxidative stress and inflammation are characterized by an increased susceptibility of the organism toward oxidative damage after consumption of a meal rich in lipids and/or carbohydrates. Micronutrients modulate immune system and exert a protective action by reducing oxidized low-density lipoprotein (ox-LDL) level. The aim of the present study was to evaluate the postprandial plasma ox-LDL level and the gene expression of 13 genes related to oxidative stress (HOSp) and human inflammasome pathways (HIp), after a tocopherol-enriched Mediterranean meal (TEM), and a Western high-fat meal (HFM). Moreover, Mediterranean Adequacy Index was calculated to define the quality of both meals.

Methods

We set up a randomized and crossover trial in healthy human volunteers. Ox-LDL level was measured by enzyme-linked immunosorbent assay and the gene expression of 13 genes related to HOSp and HIp by qRT-PCR.

Results

Ox-LDL levels significantly decreased comparing HFM versus TEM (p < 0.05). Percentages of significantly overexpressed genes after each dietary treatment are as follows: (A) baseline versus HFM: 7.69 % HIp and 23.08 % HOSp; (B) baseline versus TEM: 7.69 % HIp and 7.69 % HOSp; (C) HFM versus TEM: 15.38 % HIp and 15.38 % HOSp.

Conclusions

TEM reduced postprandial risk factors of CVD, such as ox-LDL, and the expression of inflammation and oxidative stress-related genes. Chronic studies on larger population are necessary before definitive conclusions.

Trial registration

ClinicalTrials.gov Id: NCT01890070.

This is a preview of subscription content, access via your institution.

Fig. 1
Fig. 2
Fig. 3

References

  1. 1.

    Kant AK (2010) Dietary patterns: biomarkers and chronic disease risk. Appl Physiol Nutr Metab 35:199–206. doi:10.1139/H10-005

    Article  PubMed  Google Scholar 

  2. 2.

    Ross R (1999) Atherosclerosis—an inflammatory disease. N Engl J Med 340(2):115–126

    CAS  Article  PubMed  Google Scholar 

  3. 3.

    Libby P, Ridker PM, Maseri A (2002) Inflammation and atherosclerosis. Circulation 105:1135–1143. doi:10.1161/hc0902.104353

    CAS  Article  PubMed  Google Scholar 

  4. 4.

    Li D, Mehta JL (2005) Oxidized LDL, a critical factor in atherogenesis. Cardiovasc Res 68(3):353–354

    CAS  Article  PubMed  Google Scholar 

  5. 5.

    Steinberg D (2002) Atherogenesis in perspective: hypercholesterolemia and inflammation as partners in crime. Nat Med 8(11):1211–1217

    CAS  Article  PubMed  Google Scholar 

  6. 6.

    Mitra S, Goyal T, Mehta JL (2011) Oxidized LDL, LOX-1 and atherosclerosis. Cardiovasc Drugs Ther 25(5):419–429. doi:10.1007/s10557-011-6341-5

    CAS  Article  PubMed  Google Scholar 

  7. 7.

    Mehta JL, Sanada N, Hu CP, Chen J, Dandapat A, Sugawara F, Satoh H, Inoue K, Kawase Y, Jishage K, Suzuki H, Takeya M, Schnackenberg L, Beger R, Hermonat PL, Thomas M, Sawamura T (2007) Deletion of LOX-1 reduces atherogenesis in LDLR knockout mice fed high cholesterol diet. Circ Res 100(11):1634–1642

    CAS  Article  PubMed  Google Scholar 

  8. 8.

    Le NA (2015) Lipoprotein-associated oxidative stress: a new twist to the postprandial hypothesis. Int J Mol Sci 16(1):401–419. doi:10.3390/ijms16010401

    Article  Google Scholar 

  9. 9.

    Lacroix S, Rosiers CD, Tardif JC, Nigam A (2012) The role of oxidative stress in postprandial endothelial dysfunction. Nutr Res Rev 25(2):288–301. doi:10.1017/S0954422412000182

    CAS  Article  PubMed  Google Scholar 

  10. 10.

    Yusuf S, Hawken S, Ounpuu S, Dans T, Avezum A, Lanas F, McQueen M, Budaj A, Pais P, Varigos J, Lisheng L, INTERHEART Study Investigators (2004) Effect of potentially modifiable risk factors associated with myocardial infarction in 52 countries (the INTERHEART study): case–control study. Lancet 364(9438):937–952

    Article  PubMed  Google Scholar 

  11. 11.

    Erikci Ertunc M, Hotamisligil GS (2016) Lipid signaling and lipotoxicity in metabolic inflammation: indications for metabolic disease pathogenesis and treatment. J Lipid Res. pii: jlr.R066514

  12. 12.

    Holt EM, Steffen LM, Moran A, Basu S, Steinberger J, Ross JA, Hong CP, Sinaiko AR (2009) Fruit and vegetable consumption and its relation to markers of inflammation and oxidative stress in adolescents. J Am Diet Assoc 109:414–421. doi:10.1016/j.jada.2008.11.036

    CAS  Article  PubMed  PubMed Central  Google Scholar 

  13. 13.

    Ishigaki Y, Oka Y, Katagiri H (2009) Circulating oxidized LDL: a biomarker and a pathogenic factor. Curr Opin Lipidol 20:363–369. doi:10.1097/MOL.0b013e32832fa58d

    CAS  Article  PubMed  Google Scholar 

  14. 14.

    Calabrese V, Cornelius C, Trovato A, Cavallaro M, Mancuso C, Di Renzo L, Condorelli D, De Lorenzo A, Calabrese EJ (2010) The hormetic role of dietary antioxidants in free radical-related diseases. Curr Pharm Des 16:877–883. doi:10.2174/138161210790883615

    CAS  Article  PubMed  Google Scholar 

  15. 15.

    Zamora-Ros Raul et al (2013) Dietary intakes and food sources of phenolic acids in the European Prospective Investigation into Cancer and Nutrition (EPIC) study. Br J Nutr 110:1500–1511. doi:10.1017/S0007114513000688

    CAS  Article  PubMed  Google Scholar 

  16. 16.

    Fidanza F, Alberti A, Fruttini D (2005) The Nicotera diet: the reference Italian Mediterranean diet. World Rev Nutr Diet 95:115–121. doi:10.1159/000088278

    Article  PubMed  Google Scholar 

  17. 17.

    De Lorenzo A, Petroni ML, De Luca PP et al (2001) Use of quality control indices in moderately hypocaloric Mediterranean diet for treatment of obesity. Diabetes Nutr Metab 14:181–188

    PubMed  Google Scholar 

  18. 18.

    Chrysohoou C, Panagiotakos DB, Pitsavos C et al (2004) Adherence to the Mediterranean diet attenuates inflammation and coagulation process in healthy adults: the ATTICA study. J Am Coll Cardiol 44:152–158. doi:10.1016/j.jacc.2004.03.039

    Article  PubMed  Google Scholar 

  19. 19.

    Di Renzo L, Di Pierro D, Bigioni M et al (2007) Is antioxidant plasma status in humans a consequence of the antioxidant food content influence? Eur Rev Med Pharmacol Sci 11:185–192

    PubMed  Google Scholar 

  20. 20.

    De Lorenzo A, Noce A, Bigioni M, Calabrese V, Della Rocca DG, Di Daniele N, Tozzo C, Di Renzo L (2010) The effects of Italian Mediterranean organic diet (IMOD) on health status. Curr Pharm Des 16:814–824. doi:10.2174/138161210790883561

    Article  PubMed  Google Scholar 

  21. 21.

    Alberti-Fidanza A, Fidanza F (2004) Mediterranean adequacy index of Italian diets. Public Health Nutr 7:937–941. doi:10.1079/PHN2004557

    Article  PubMed  Google Scholar 

  22. 22.

    Norton K, Olds T (1996) Anthropometrica. Australia, Sydney

    Google Scholar 

  23. 23.

    Di Renzo L, Rizzo M, Iacopino L, Sarlo F, Domino E, Jacoangeli F, Colica C, Sergi D, De Lorenzo A (2013) Body composition phenotype: italian mediterranean diet and C677T MTHFR gene polymorphism interaction. Eur Rev Med Pharmacol Sci 17:2555–2565

    PubMed  Google Scholar 

  24. 24.

    Livak KJ, Schmittgen TD (2001) Analysis of relative gene expression data using Real-Time Quantitative PCR and the 2−ΔΔCt method. Methods 25:402–408. doi:10.1006/meth.2001.1262

    CAS  Article  PubMed  Google Scholar 

  25. 25.

    Rudkowska I, Paradis AM, Thifault E, Julien P, Tchernof A, Couture P, Lemieux S, Barbier O, Vohl MC (2013) Transcriptomic and metabolomic signatures of an n-3 polyunsaturated fatty acids supplementation in a normolipidemic/normocholesterolemic Caucasian population. J Nutr Biochem 24:54–61. doi:10.1016/j.jnutbio.2012.01.016

    CAS  Article  PubMed  Google Scholar 

  26. 26.

    Valkon M, Leibfritz D, Moncol J, Cronin MT, Mazur M, Telser J (2007) Free radicals and antioxidants in normal physiological functions and human disease. Int J Biochem Cell Biol 39:44–84. doi:10.1016/j.biocel.2006.07.001

    Article  Google Scholar 

  27. 27.

    Kornman KS, Martha PM, Duff GW (2004) Genetic variations and inflammation: a practical nutrigenomics opportunity. Nutrition 20:44–49. doi:10.1016/j.nut.2003.09.008

    CAS  Article  PubMed  Google Scholar 

  28. 28.

    Matsumoto Y, Oshida T, Obayashi I et al (2002) Identification of highly expressed genes in peripheral blood T cells from patients with atopic dermatitis. Int Arch Allergy Immunol 129:327–340. doi:10.1159/000067589

    CAS  Article  PubMed  Google Scholar 

  29. 29.

    Ortega R (2006) Importance of functional foods in the Mediterranean diet. Public Health Nutr 9:1136–1140. doi:10.1017/S1368980007668530

    CAS  Article  PubMed  Google Scholar 

  30. 30.

    Grosso G, Marventano S, Yang J, Micek A, Pajak A, Scalfi L, Galvano F, Kales NS (2015) A comprehensive meta-analysis on evidence of mediterranean diet and cardiovascular disease: are individual components equal? Crit Rev Food Sci Nutr. doi:10.1080/10408398.2015.1107021

    PubMed  Google Scholar 

  31. 31.

    Beydoun MA, Shroff MR, Chen X, Beydoun HA, Wang Y, Zonderman AB (2011) Serum antioxidant status is associated with metabolic syndrome among U.S. adults in recent national surveys. J Nutr 141:903–913. doi:10.3945/jn.110.136580

    CAS  Article  PubMed  PubMed Central  Google Scholar 

  32. 32.

    Basu A, Betts NM, Ortiz J, Simmons B, Wu M, Lyons TJ (2011) Low-energy cranberry juice decreases lipid oxidation and increases plasma antioxidant capacity in women with metabolic syndrome. Nutr Res 31:190–196. doi:10.1016/j.nutres.2011.02.003

    CAS  Article  PubMed  PubMed Central  Google Scholar 

  33. 33.

    Bouchard-Mercier A, Paradis AM, Rudkowska I, Lemieux S, Couture P, Vohl MC (2013) Associations between dietary patterns and gene expression profiles of healthy men and women: a cross-sectional study. Nutr J 12:12–24. doi:10.1186/1475-2891-12-24

    Article  Google Scholar 

  34. 34.

    Di Renzo L, Carraro A, Minella D, Botta R, Contessa C, Sartor C, Iacopino AM, De Lorenzo A (2014) Nutrient analysis critical control point (NACCP): hazelnut as a prototype of nutrigenomic study. Food Nutr Sci 5:79–88. doi:10.4236/fns.2014.51011

    Article  Google Scholar 

  35. 35.

    Casas-Agustench P, López-Uriarte P, Bulló M, Ros E, Cabré-Vila JJ, Salas-Salvadó J (2011) Effects of one serving of mixed nuts on serum lipids, insulin resistance and inflammatory markers in patients with the metabolic syndrome. Nutr Metab Cardiovasc Dis 21:126–135. doi:10.1016/j.numecd.2009.08.005

    CAS  Article  PubMed  Google Scholar 

  36. 36.

    Souza RG, Gomes AC, Naves MM, Mota JF (2015) Nuts and legume seeds for cardiovascular risk reduction: scientific evidence and mechanisms of action. Nutr Rev 73:335–347. doi:10.1093/nutrit/nuu008

    Article  PubMed  Google Scholar 

  37. 37.

    Maffeis C, Pinelli L, Surano MG, Fornari E, Cordioli S, Gasperotti S (2012) Pro-atherogenic postprandial profile: meal-induced changes of lipoprotein sub-fractions and inflammation markers in obese boys. Nutr Metab Cardiovasc Dis 22:959–965. doi:10.1016/j.numecd.2010.12.009

    CAS  Article  PubMed  Google Scholar 

  38. 38.

    Di Renzo L, Carraro A, Valente R, Iacopino L, Colica C, De Lorenzo A (2014) Intake of red wine in different meals modulates oxidized LDL level, oxidative and inflammatory gene expression in healthy people: a randomized crossover trial. Oxid Med Cell Longev 2014:681318. doi:10.1155/2014/681318

    Article  PubMed  PubMed Central  Google Scholar 

  39. 39.

    Schrauwen P, Hoppeler H, Billeter R, Bakker AH, Pendergast DR (2010) Fiber type dependent upregulation of human skeletal muscle UCP2 and UCP3 mRNA expression by high-fat diet. Int J Obes Relat Metab Disord 25:449–456. doi:10.1038/sj.ijo.0801566

    Article  Google Scholar 

  40. 40.

    Kuo ML, Huang TS, Lin JK (1996) Curcumin, an antioxidant and anti-tumor promoter, induces apoptosis in human leukemia cells. Biochim Biophys Acta 1317:95–100. doi:10.1016/S0925-4439(96)00032-4

    CAS  Article  PubMed  Google Scholar 

  41. 41.

    Smolarek AK, So JY, Burgess B, Kong AN, Reuhl K, Lin Y, Shih WJ, Li G, Lee MJ, Chen YK, Yang CS, Suh N (2012) Dietary administration of δ- and γ-tocopherol inhibits tumorigenesis in the animal model of estrogen-receptor positive, but not HER-2 breast cancer. Cancer Prev Res (Phila) 5:1310–1320. doi:10.1158/1940-6207.CAPR-12-0263

    CAS  Article  Google Scholar 

  42. 42.

    Kim SH, Park JG, Lee J, Yang WS, Park GW, Kim HG, Yi YS, Baek KS, Sung NY, Hossen MJ, Lee MN, Kim JH, Cho JY (2015) The Dietary Flavonoid Kaempferol Mediates Anti-Inflammatory Responses via the Src, Syk, IRAK1, and IRAK4 Molecular Targets. Mediat Inflamm 2015:904142. doi:10.1155/2015/904142

    Google Scholar 

  43. 43.

    Zhenxing X, Shufang X, Guo-Wei L (2014) Gamma-aminobutyric acid improves oxidative stress and function of the thyroid in high-fat diet fed mice. J Funct Foods 8:76–86. doi:10.1016/j.jff.2014.03.003

    Article  Google Scholar 

  44. 44.

    Di Renzo L, Carraro A, Valente R, Iacopino L, Colica C, De Lorenzo A (2014) Intake of red wine in different meals modulates oxidized LDL level, oxidative and inflammatory gene expression in healthy people: a randomized crossover trial. Oxid Med Cell Longev 2014:681318. doi:10.1155/2014/681318

    Article  PubMed  PubMed Central  Google Scholar 

  45. 45.

    Waxman A, World Health Assembly (2004) WHO global strategy on diet, physical activity and health. Food Nutr Bull 25:292–302

    Article  Google Scholar 

Download references

Author’s contributions

ADL conceived the experiments and had primary responsibility for the final content; LDR designed the experiments and drafted the manuscript; MAP, SB, IG collected the data and performed the experiments; PG analyzed the data. AC developed the MAI calculator. All authors contributed to the interpretation of the data and revision of the manuscript, read and approved the final manuscript.

Funding

This study was supported by grants from Ministry of Agriculture, Food and Forestry (D.M.; 2017188).

Author information

Affiliations

Authors

Corresponding author

Correspondence to Antonino De Lorenzo.

Ethics declarations

Conflict of interest

The authors declare that they have no conflict of interest.

Ethical approval

All procedures performed in studies involving human participants were in accordance with the ethical standards of the institutional and/or national research committee and with the 1964 Helsinki Declaration and its later amendments or comparable ethical standards.

Informed consent

Informed consent was obtained from all individual participants included in the study.

Additional information

Managed by Massimo Federici.

Rights and permissions

Reprints and Permissions

About this article

Verify currency and authenticity via CrossMark

Cite this article

De Lorenzo, A., Bernardini, S., Gualtieri, P. et al. Mediterranean meal versus Western meal effects on postprandial ox-LDL, oxidative and inflammatory gene expression in healthy subjects: a randomized controlled trial for nutrigenomic approach in cardiometabolic risk. Acta Diabetol 54, 141–149 (2017). https://doi.org/10.1007/s00592-016-0917-2

Download citation

Keywords

  • Oxidized-LDL
  • Nutrigenomic
  • Mediterranean meal
  • CVD