Skip to main content

Advertisement

Log in

MicroRNA-126 and micro-/macrovascular complications of type 1 diabetes in the EURODIAB Prospective Complications Study

  • Original Article
  • Published:
Acta Diabetologica Aims and scope Submit manuscript

Abstract

Aims

Increasing evidence suggests a potential role of circulating miRNAs as clinical biomarkers, and loss of miRNA-126 has been proposed as a predictor of type 2 diabetes onset. However, a systematic analysis of circulating miRNAs in type 1 diabetic patients with micro-/macrovascular complications has not yet been performed.

Methods

A cross-sectional nested case–control study from the EURODIAB Prospective Complications Study of 455 type 1 diabetic patients was performed. Case subjects (n = 312) were defined as those with one or more complications of diabetes; control subjects (n = 143) were those with no evidence of any complication. A differential miRNA expression profiling was performed in pooled serum samples from cases and controls. Furthermore, miR-126 levels were quantified by qPCR in all individual samples and associations with diabetic complications investigated.

Results

Twenty-five miRNAs differed in pooled samples from cases and controls. miR-126 levels were significantly lower in case than in control subjects, even after adjustment for age and sex. In logistic regression analyses, miR-126 was negatively associated with all complications (OR = 0.85, 95 % CI 0.75–0.96) as well as with each micro-/macrovascular complication examined separately. This was likely dependent of diabetes as associations were no longer significant after adjustment for both hyperglycemia and diabetes duration. However, a significant 25 % risk reduction, independent of age, sex, A1C, and diabetes duration, was still observed for proliferative retinopathy (OR = 0.75, 95 % CI 0.59–0.95).

Conclusions

In this large cohort of type 1 diabetic subjects, we found that miR-126 levels are associated with vascular complications of diabetes, particularly with proliferative retinopathy.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Similar content being viewed by others

References

  1. He L, Hannon GJ (2004) MicroRNAs: small RNAs with a big role in gene regulation. Nat Rev Genet 5:522–531

    Article  CAS  PubMed  Google Scholar 

  2. Filios SR, Shalev A (2015) β-Cell microRNAs: small but powerful. Diabetes 64:3631–3644

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  3. Beltrami C, Angelini TG, Emanueli C (2014) Noncoding RNAs in diabetes vascular complications. J Mol Cell Cardiol 89:42–50

    Article  PubMed  Google Scholar 

  4. Shantikumar S, Caporali A, Emanueli C (2012) Role of microRNAs in diabetes and its cardiovascular complications. Cardiovasc Res 93:583–593

    Article  CAS  PubMed  Google Scholar 

  5. Mitchell PS, Parkin RK, Kroh EM et al (2008) Circulating miRNAs as stable blood-based markers for cancer detection. Proc Natl Acad Sci USA 105:10513–10518

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  6. Tanaka M, Oikawa K, Takanashi M et al (2009) Down-regulation of miR-92 in human plasma is a novel marker for acute leukemia patients. PLoS ONE 4:e5532

    Article  PubMed  PubMed Central  Google Scholar 

  7. Laterza OF, Lim L, Garrett-Engele PW et al (2009) Plasma miRNAs as sensitive and specific biomarkers of tissue injury. Clin Chem 55:1977–1983

    Article  CAS  PubMed  Google Scholar 

  8. McManus DD, Ambros V (2011) Circulating miRNAs in cardiovascular disease. Circulation 124:1908–1910

    Article  PubMed  PubMed Central  Google Scholar 

  9. Nielsen LB, Wang C, Sørensen K, et al (2012) Circulating levels of microRNA from children with newly diagnosed type 1 diabetes and healthy controls: evidence that miR-25 associates to residual beta-cell function and glycaemic control during disease progression. Exp Diabetes Res 2012:896362. doi:10.1155/2012/896362

    PubMed  PubMed Central  Google Scholar 

  10. Zampetaki A, Kiechl S, Drozdov I et al (2010) Plasma microRNA profiling reveals loss of endothelial miR-126 and other microRNAs in type 2 diabetes. Circ Res 107:810–817

    Article  CAS  PubMed  Google Scholar 

  11. Zampetaki A, Willeit P, Burr S et al (2016) Angiogenic microRNAs linked to incidence and progression of diabetic retinopathy in type 1 diabetes. Diabetes 65:216–227

    CAS  PubMed  Google Scholar 

  12. Pezzolesi MG, Satake E, McDonnell KP et al (2015) Circulating TGF-β1-regulated miRNAs and the risk of rapid progression to ESRD in type 1 diabetes. Diabetes 64:3285–3293

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  13. The EURODIAB IDDM Complications Study Group (1994) Microvascular and acute complications in IDDM patients: the EURODIAB IDDM complications study. Diabetologia 3:278–285

    Google Scholar 

  14. Chaturvedi N, Sjoelie AK, Porta M et al (2001) EURODIAB prospective complications study: markers of insulin resistance are strong risk factors for retinopathy incidence in type 1 diabetes. Diabetes Care 24:284–289

    Article  CAS  PubMed  Google Scholar 

  15. Schram MT, Chaturvedi N, Schalkwijk CG et al (2005) EURODIAB prospective complications study group. Markers of inflammation are cross-sectionally associated with microvascular complications and cardiovascular disease in type 1 diabetes: the EURODIAB prospective complications study. Diabetologia 48:370–378

    Article  CAS  PubMed  Google Scholar 

  16. Gruden G, Bruno G, Chaturvedi N et al (2009) EURODIAB prospective complications study group. ANTI-HSP60 and ANTI-HSP70 antibody levels and micro/macrovascular complications in type 1 diabetes: the EURODIAB study. J Intern Med 266:527–536

    Article  CAS  PubMed  Google Scholar 

  17. Gruden G, Bruno G, Chaturvedi N et al (2008) EURODIAB prospective complications study group. Serum heat shock protein 27 and diabetes complications in the EURODIAB prospective complications study: a novel circulating marker for diabetic neuropathy. Diabetes 57:1966–1970

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  18. Burt D, Bruno G, Chaturvedi N et al (2009) Anti-heat shock protein 27 antibody levels and diabetes complications in the EURODIAB study. Diabetes Care 32:1269–1271

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  19. Chaturvedi N, Schalkwijk CG, Abrahamian H et al (2002) EURODIAB prospective complications study group. Circulating and urinary transforming growth factor beta1, Amadori albumin, and complications of type 1 diabetes: the EURODIAB prospective complications study. Diabetes Care 25:2320–2327

    Article  CAS  PubMed  Google Scholar 

  20. Giunti S, Bruno G, Lillaz E et al (2007) EURODIAB IDDM complications study group. Incidence and risk factors of prolonged QTc interval in type 1 diabetes: the EURODIAB prospective complications study. Diabetes Care 30:2057–2063

    Article  PubMed  Google Scholar 

  21. Levey AS, Bosch JP, Lewis JB et al (1999) A more accurate method to estimate glomerular filtration rate from serum creatinine: a new prediction equation. Modification of diet in renal disease study group. Ann Intern Med 130:461–470

    Article  CAS  PubMed  Google Scholar 

  22. Harris TA, Yamakuchi M, Ferlito M et al (2008) MicroRNA-126 regulates endothelial expression of vascular cell adhesion molecule 1. Proc Natl Acad Sci USA 105:1516–1521

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  23. Martin MM, Lee EJ, Buckenberger JA et al (2006) MicroRNA-155 regulates human angiotensin II type 1 receptor expression in fibroblasts. J Biol Chem 281:18277–18284

    Article  CAS  PubMed  Google Scholar 

  24. Martin MM, Buckenberger JA, Jiang J et al (2007) The human angiotensin II type 1 receptor +1166 A/C polymorphism attenuates microRNA-155 binding. J Biol Chem 282:24262–24269

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  25. Barutta F, Tricarico M, Corbelli A et al (2013) Urinary exosomal microRNAs in incipient diabetic nephropathy. PLoS ONE 8:e73798

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  26. Fichtlscherer S, De Rosa S, Fox H et al (2010) Circulating microRNAs in patients with coronary artery disease. Circ Res 107:677–684

    Article  CAS  PubMed  Google Scholar 

  27. Wang C, Wan S, Yang T et al (2016) Increased serum microRNAs are closely associated with the presence of microvascular complications in type 2 diabetes mellitus. Sci Rep 6:20032

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  28. Spinetti G, Fortunato O, Caporali A et al (2013) MicroRNA-15a and microRNA-16 impair human circulating proangiogenic cell functions and are increased in the proangiogenic cells and serum of patients with critical limb ischemia. Circ Res 112:335–346

    Article  CAS  PubMed  Google Scholar 

  29. Wang F, Long G, Zhao C et al (2013) Plasma microRNA-133a is a new marker for both acute myocardial infarction and underlying coronary artery stenosis. J Transl Med 11:222

    Article  PubMed  PubMed Central  Google Scholar 

  30. Afanasyeva EA, Mestdagh P, Kumps C et al (2011) MicroRNA miR-885-5p targets CDK2 and MCM5, activates p53 and inhibits proliferation and survival. Cell Death Differ 18:974–984

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  31. van Solingen C, Bijkerk R, de Boer HC et al (2015) The role of microRNA-126 in vascular homeostasis. Curr Vasc Pharmacol 13:341–351

    Article  PubMed  Google Scholar 

  32. Asgeirsdóttir SA, van Solingen C, Kurniati NF et al (2012) MicroRNA-126 contributes to renal microvascular heterogeneity of VCAM-1 protein expression in acute inflammation. Am J Physiol Renal Physiol 302:F1630–F1639

    Article  PubMed  Google Scholar 

  33. Jansen F, Yang X, Hoelscher M et al (2013) Endothelial microparticle-mediated transfer of MicroRNA-126 promotes vascular endothelial cell repair via SPRED1 and is abrogated in glucose-damaged endothelial microparticles. Circulation 128:2026–2038

    Article  CAS  PubMed  Google Scholar 

  34. Zhang T, Lv C, Li L et al (2013) Plasma miR-126 is a potential biomarker for early prediction of type 2 diabetes mellitus in susceptible individuals. Biomed Res Int 2013:761617

    PubMed  PubMed Central  Google Scholar 

  35. Zhang Y, Wang X, Xu B et al (2013) Epigenetic silencing of miR-126 contributes to tumor invasion and angiogenesis in colorectal cancer. Oncol Rep 30:1976–1984

    CAS  PubMed  Google Scholar 

  36. Chen H, Li L, Wang S et al (2014) Reduced miR-126 expression facilitates angiogenesis of gastric cancer through its regulation on VEGF-A. Oncotarget 5:11873–11885

    Article  PubMed  PubMed Central  Google Scholar 

  37. Ye P, Liu J, He F et al (2013) Hypoxia-induced deregulation of miR-126 and its regulative effect on VEGF and MMP-9 expression. Int J Med Sci 11:17–23

    Article  PubMed  PubMed Central  Google Scholar 

  38. van Solingen C, de Boer HC, Bijkerk R et al (2011) MicroRNA-126 modulates endothelial SDF-1 expression and mobilization of Sca-1(+)/Lin(-) progenitor cells in ischaemia. Cardiovasc Res 92:449–455

    Article  PubMed  Google Scholar 

  39. Butler JM, Guthrie SM, Koc M et al (2005) SDF-1 is both necessary and sufficient to promote proliferative retinopathy. J Clin Invest 115:86–93

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  40. McManus DD, Freedman JE (2015) MicroRNAs in platelet function and cardiovascular disease. Nat Rev Cardiol 12:711–717

    Article  CAS  PubMed  Google Scholar 

Download references

Acknowledgments

This work was supported by the “European Foundation for the Study of Diabetes.”

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Federica Barutta.

Ethics declarations

Conflict of interest

None.

Human and animal rights

All procedures followed were in accordance with the ethical standards of the responsible committee on the human experimentation (institutional and national) and with the Helsinki Declaration of 1975, as revised in 2008.

Informed consent

Informed consent was obtained from all individual participants included in the study.

Additional information

Managed by Massimo Porta.

Electronic supplementary material

Below is the link to the electronic supplementary material.

Supplementary material 1 (DOC 30 kb)

Supplementary material 2 (DOCX 12 kb)

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Barutta, F., Bruno, G., Matullo, G. et al. MicroRNA-126 and micro-/macrovascular complications of type 1 diabetes in the EURODIAB Prospective Complications Study. Acta Diabetol 54, 133–139 (2017). https://doi.org/10.1007/s00592-016-0915-4

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s00592-016-0915-4

Keywords

Navigation