Skip to main content

Advertisement

Log in

Potential role of Hsp90 in rat islet function under the condition of high glucose

  • Original Article
  • Published:
Acta Diabetologica Aims and scope Submit manuscript

Abstract

Aims

The preservation of pancreatic β-cell function is a key point in the treatment of type 2 diabetes mellitus. There is substantial evidence demonstrating that heat-shock protein 90 (Hsp90) is needed for the stabilization and correct folding of client proteins and plays important roles in various biological processes. Here, we revealed the important role of Hsp90 in β-cell function.

Methods

Islets from male Sprague–Dawley rats were isolated to be used for further RT-PCR, Western blot, and insulin secretion test ex vivo in response to different stimuli.

Results

Our results revealed that Hsp90 expression was significantly decreased in isolated rat islets exposed to high glucose, which was involved in glucokinase activation and glucose metabolism, not calcium signaling. Two kinds of Hsp90 inhibitors 17-DMAG and CCT018159 markedly enhanced glucose-stimulated insulin secretion from rat islets, along with increased expressions of genes closely related to β-cell function.

Conclusions

These data indicate that Hsp90 may be involved in high glucose-induced islet function adaptation.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Institutional subscriptions

Fig. 1
Fig. 2
Fig. 3
Fig. 4

Similar content being viewed by others

References

  1. Ashcroft FM, Rorsman P (2012) Diabetes mellitus and the beta cell: the last ten years. Cell 148(6):1160–1171. doi:10.1016/j.cell.2012.02.010

    Article  CAS  PubMed  Google Scholar 

  2. Fu Z, Gilbert ER, Liu D (2013) Regulation of insulin synthesis and secretion and pancreatic Beta-cell dysfunction in diabetes. Curr Diabetes Rev 9(1):25–53

    Article  PubMed  PubMed Central  Google Scholar 

  3. Henquin JC (2009) Regulation of insulin secretion: a matter of phase control and amplitude modulation. Diabetologia 52(5):739–751. doi:10.1007/s00125-009-1314-y

    Article  CAS  PubMed  Google Scholar 

  4. Deng R, Nie A, Jian F et al (2014) Acute exposure of beta-cells to troglitazone decreases insulin hypersecretion via activating AMPK. Biochim Biophys Acta 1840(1):577–585. doi:10.1016/j.bbagen.2013.10.021

    Article  CAS  PubMed  Google Scholar 

  5. Corkey BE (2012) Banting lecture 2011: hyperinsulinemia: cause or consequence? Diabetes 61(1):4–13. doi:10.2337/db11-1483

    Article  CAS  PubMed  Google Scholar 

  6. Zuehlke AD, Beebe K, Neckers L, Prince T (2015) Regulation and function of the human HSP90AA1 gene. Gene 570(1):8–16. doi:10.1016/j.gene.2015.06.018

    Article  CAS  PubMed  Google Scholar 

  7. Khurana N, Bhattacharyya S (2015) Hsp90, the concertmaster: tuning transcription. Front Oncol 5:100. doi:10.3389/fonc.2015.00100

    Article  PubMed  PubMed Central  Google Scholar 

  8. Sidera K, Patsavoudi E (2014) HSP90 inhibitors: current development and potential in cancer therapy. Recent Pat Anti-Cancer Drug Discov 9(1):1–20

    Article  CAS  Google Scholar 

  9. Murphy PJ, Morishima Y, Kovacs JJ, Yao TP, Pratt WB (2005) Regulation of the dynamics of Hsp90 action on the glucocorticoid receptor by acetylation/deacetylation of the chaperone. J Biol Chem 280(40):33792–33799. doi:10.1074/jbc.M506997200

    Article  CAS  PubMed  Google Scholar 

  10. Yan FF, Pratt EB, Chen PC et al (2010) Role of Hsp90 in biogenesis of the beta-cell ATP-sensitive potassium channel complex. Mol Biol Cell 21(12):1945–1954. doi:10.1091/mbc.E10-02-0116

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  11. Patel R, Williams-Dautovich J, Cummins CL (2014) Minireview: new molecular mediators of glucocorticoid receptor activity in metabolic tissues. Mol Endocrinol 28(7):999–1011. doi:10.1210/me.2014-1062

    Article  PubMed  Google Scholar 

  12. Kirschke E, Goswami D, Southworth D, Griffin PR, Agard DA (2014) Glucocorticoid receptor function regulated by coordinated action of the Hsp90 and Hsp70 chaperone cycles. Cell 157(7):1685–1697. doi:10.1016/j.cell.2014.04.038

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  13. Lee JH, Gao J, Kosinski PA et al (2013) Heat shock protein 90 (HSP90) inhibitors activate the heat shock factor 1 (HSF1) stress response pathway and improve glucose regulation in diabetic mice. Biochem Biophys Res Commun 430(3):1109–1113. doi:10.1016/j.bbrc.2012.12.029

    Article  CAS  PubMed  Google Scholar 

  14. Heit JJ, Apelqvist AA, Gu X et al (2006) Calcineurin/NFAT signalling regulates pancreatic beta-cell growth and function. Nature 443(7109):345–349. doi:10.1038/nature05097

    Article  CAS  PubMed  Google Scholar 

  15. Johnson D, Shepherd RM, Gill D, Gorman T, Smith DM, Dunne MJ (2007) Glucose-dependent modulation of insulin secretion and intracellular calcium ions by GKA50, a glucokinase activator. Diabetes 56(6):1694–1702. doi:10.2337/db07-0026

    Article  CAS  PubMed  Google Scholar 

  16. Khandelwal A, Crowley VM, Blagg BS (2015) Natural product inspired N-terminal Hsp90 inhibitors: from bench to bedside? Med Res Rev. doi:10.1002/med.21351

    PubMed  Google Scholar 

  17. Poitout V, Robertson RP (2008) Glucolipotoxicity: fuel excess and beta-cell dysfunction. Endocr Rev 29(3):351–366. doi:10.1210/er.2007-0023

    Article  CAS  PubMed  Google Scholar 

  18. Prentki M, Matschinsky FM, Madiraju SR (2013) Metabolic signaling in fuel-induced insulin secretion. Cell Metab 18(2):162–185. doi:10.1016/j.cmet.2013.05.018

    Article  CAS  PubMed  Google Scholar 

  19. Porat S, Weinberg-Corem N, Tornovsky-Babaey S et al (2011) Control of pancreatic beta cell regeneration by glucose metabolism. Cell Metab 13(4):440–449. doi:10.1016/j.cmet.2011.02.012

    Article  CAS  PubMed  Google Scholar 

  20. Ravier MA, Cheng-Xue R, Palmer AE, Henquin JC, Gilon P (2010) Subplasmalemmal Ca(2+) measurements in mouse pancreatic beta cells support the existence of an amplifying effect of glucose on insulin secretion. Diabetologia 53(9):1947–1957. doi:10.1007/s00125-010-1775-z

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  21. Ashcroft SJ, Ashcroft FM (1992) The sulfonylurea receptor. Biochim Biophys Acta 1175(1):45–59

    Article  CAS  PubMed  Google Scholar 

  22. Erlejman AG, Lagadari M, Toneatto J, Piwien-Pilipuk G, Galigniana MD (2014) Regulatory role of the 90-kDa-heat-shock protein (Hsp90) and associated factors on gene expression. Biochim Biophys Acta 1839(2):71–87. doi:10.1016/j.bbagrm.2013.12.006

    Article  CAS  PubMed  Google Scholar 

  23. Taipale M, Jarosz DF, Lindquist S (2010) HSP90 at the hub of protein homeostasis: emerging mechanistic insights. Nat Rev Mol Cell Biol 11(7):515–528. doi:10.1038/nrm2918

    Article  CAS  PubMed  Google Scholar 

  24. Kadiyala V, Smith CL (2014) Minireview: the versatile roles of lysine deacetylases in steroid receptor signaling. Mol Endocrinol 28(5):607–621. doi:10.1210/me.2014-1002

    Article  PubMed  Google Scholar 

  25. Kadiyala V, Patrick NM, Mathieu W et al (2013) Class I lysine deacetylases facilitate glucocorticoid-induced transcription. J Biol Chem 288(40):28900–28912. doi:10.1074/jbc.M113.505115

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  26. Shao S, Fang Z, Yu X, Zhang M (2009) Transcription factors involved in glucose-stimulated insulin secretion of pancreatic beta cells. Biochem Biophys Res Commun 384(4):401–404. doi:10.1016/j.bbrc.2009.04.135

    Article  CAS  PubMed  Google Scholar 

  27. Andrali SS, Sampley ML, Vanderford NL, Ozcan S (2008) Glucose regulation of insulin gene expression in pancreatic beta-cells. Biochem J 415(1):1–10. doi:10.1042/BJ20081029

    Article  CAS  PubMed  Google Scholar 

  28. Flanagan SE, Clauin S, Bellanne-Chantelot C et al (2009) Update of mutations in the genes encoding the pancreatic beta-cell K(ATP) channel subunits Kir6.2 (KCNJ11) and sulfonylurea receptor 1 (ABCC8) in diabetes mellitus and hyperinsulinism. Hum Mutat 30(2):170–180. doi:10.1002/humu.20838

    Article  CAS  PubMed  Google Scholar 

Download references

Acknowledgments

This work was funded by grants from the National Natural Science Foundation of China (81170720, 81270910, 81370876, 81471030, and 81570693).

Author information

Authors and Affiliations

Authors

Corresponding authors

Correspondence to Libin Zhou or Xiao Wang.

Ethics declarations

Conflict of interest

The authors declare that they have no conflict of interest.

Ethical standard

All experimental procedures related to animal handling in the present study were adhered to the approval obtained from the Laboratory Animal Ethics Committee of Ruijin Hospital.

Human and animal rights

This article does not contain any studies with human subjects performed by any of the authors. All institutional and national guidelines for the care and use of laboratory animals were followed.

Informed consent

No informed consent.

Additional information

Managed by Antonio Secchi.

Xue Yang and Yuqing Zhang have contributed equally to this work.

Electronic supplementary material

Below is the link to the electronic supplementary material.

Supplementary material 1 (DOC 19 kb)

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Yang, X., Zhang, Y., Xu, W. et al. Potential role of Hsp90 in rat islet function under the condition of high glucose. Acta Diabetol 53, 621–628 (2016). https://doi.org/10.1007/s00592-016-0852-2

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s00592-016-0852-2

Keywords

Navigation